"nr Algorithm Theory -

UNI

Chapter 7
Randomized Algorithms

Part IV:
Rand. Quicksort : High Probability Bound

Fabian Kuhn

FREIBURG



UNI

Quicksort: High Probability Bound

FREIBURG

 We have seen that the number of comparisons of randomized
quicksort is O(nlogn) in expectation.

 (Can we also show that the number of comparisons is

O (nlogn) with high probability?

 Recall:

On each recursion level, each pivot is compared once with
each other element that is still in the same “part”

Algorithm Theory Fabian Kuhn 2



Counting Number of Comparisons

UNI
FREIBURG

 We looked at 2 ways to count the number of comparisons
— recursive characterization of the expected number
— number of different pairs of values that are compared

Let’s consider yet another way:
 Each comparison is between a pivot and a non-pivot

* How many times is a specific array element x compared as a
non-pivot?

Element x is compared as a non-pivot to a pivot once in every
recursion level until one of the following two conditions apply:

1. xischosen as a pivot
2. xisalone

Algorithm Theory Fabian Kuhn 3



Successful Recursion Level

UNI
FREIBURG

* Consider a specific recursion level £

— Where the first recursion level is level 1

Define K, as follows:

* |If x is contained in a subarray on recursion level £, then K, is
defined as the length of the subarray containing x on level £.
— We therefore have K; = nand K,,; < K, forall£ > 1

* If x has been chosen as a pivot before level £, we set K, .= 1

#comparisons of x as non-pivot < #levels € for which K, > 1

Definition: We say that recursion level £ is successful for element
x iff the following is true:

2
Kepa =1 or Kppqs5-Ky

Algorithm Theory Fabian Kuhn 4



Successful Recursion Level

UNI
f

FREIBURG

Lemma: For every recursion level £ and every array element x, it
holds that level £ is successful for x with probability at least 1/5,
independently of what happens in other recursion levels.

Proof:
* Assume that K, > 1, otherwise level £ is trivially successful

> |*¢/3] = [*¢/3] > /]

* If pivotis in the middle part, both remaining parts have size
K

— In this case, level ¢ is successful

* The probability that the pivot in in the middle partis > /.

Algorithm Theory Fabian Kuhn 5



Number of Successful Recursion Levels }

UNI
FREIBURG

Lemma: If among the first £ recursion levels, at least logs, (1)
are successful for element x, we have K,,; = 1.

Proof:

e We know that
K, = n, Vi=1:K;,q <K;

 Iflevel iissuccessful, thenK;,{ <?/3-KjorK;;; =1

e |f s among the first £ levels are successful, then

Kpy1 < max{l,n ' (2/3)8}

* Ifs =logs, (n),then Ky 1 < 1.

Algorithm Theory Fabian Kuhn 6



UNI

Chernoff Bounds

* LetXy,..., X, beindependent 0-1 random variables and define
p; = P(X; = 1).

* Consider the random variable X = Y7, X; lfpi =pforalli:

+ Wehave = E[X] = 37, E[X,] = X% p; = X ~ Bin(n, p)

Chernoff Bound (Lower Tail):
V6 >0: P(X < (1—8)p) < e %n/2

Chernoff Bound (Upper Tail):

e’ H
V> 0: PX>A4+d)) < <(1 n 6)1+5) T e—8%1/3

holds for 6 < 1

Algorithm Theory Fabian Kuhn 7

FREIBURG



Chernoff Bounds, Example

UNI
FREIBURG

Assume that a fair coin is flipped n times. What is the probability to

have 1

1. lessthann/3 heads? 2

n 1\ n 11n
— — — — 0 m— 2. 2.2 f— _n/36
IP(X<3) IP<X<<1 3> 2><e 3 e
62

_ — Sl
2. more than 0.51n tails? P(X <(1-8)u) <e 2

n _0.027
IP(X < (1+0.02) 'E) <e 3

n
) —0.0000667n

= e

62
PX>1+8u) <e 3*

3. lessthan™/, —+/c - nlnn tails?

. 4cnlnnn
IP<X<<1_2\/c nlnn>£><e Jdenan, 2=e—c-1nn=i

n 2 ne¢

Tl
With high probability, #heads/tails = s 0(,/nlog n)

Algorithm Theory Fabian Kuhn 8



Number of Comparisons for x

UNI

Lemma: For every array element x, with high probability, as a non-
pivot, x is compared to a pivot at most O (logn) times.

Proof:
* Consider someleveli > 1, and let if level i not successful

q; ‘= P(level i successful for x | history up to level i)
* Previous lemma = q; = 1/;

e Define random variable

0O iflevel i not successful for x

Xy : 1 with probability 1/,3 if level i successful for x

* Then, P(X; = 1) = 1/; and X; are independent for different i

Algorithm Theory Fabian Kuhn 9

FREIBURG



Number of Comparisons for x

UNI

Lemma: For every array element x, with high probability, as a non-
pivot, x is compared to a pivot at most O (logn) times.

Proof:
« X;independent, P(X; = 1) = 1/5, X; = 1 = level i successful

e Consider the first t levels and define X := z X;

- E[X]=1/3-t
— X < successful levels for x among first t levels

* Hence, if X = logs, (n),then K1 =1

* We thus need that for any const. ¢ > 0 and some t = O(logn),

P (X < logs B (m) < -

Algorithm Theory Fabian Kuhn 10

FREIBURG



UNI

Number of Comparisons for x

FREIBURG

Lemma: For every array element x, with high probability, as a non-
pivot, x is compared to a pivot at most O (logn) times.

Proof:
e u:=E[X]=15-t forc> 0andsomet = 0(logn), we need

P (X < logs (n)) < 1
/2 — n¢
_8% _K
e Chernoff: PX<(1-&Hw <e 2" = IP’(X<M/2) <e 8
* Weneed u = 2-logs, (n) such that hy = logs, (n)
e Weneed > 8c-Inn suchthat e #/8 <n=°¢

* We can therefore chooset = 3 - u = O(logn).

Algorithm Theory Fabian Kuhn 11



Number of Comparisons

UNI
FREIBURG

Theorem: With high probability, the total number of comparisons is
at most O(nlogn).

Proof:

* For every const. ¢ > 0, there exists const. @ > 0, s.t. for every
element x, the number of comparisons for element x as a non-
pivot is < a Inn with probability at least 1 — 1/ ..

* Define event &, := {#comparisons for x as non-pivot > a Inn}
— P(E,) <n ¢

* Union bound over all events &,.:

n n 1 1
P<U8x> < zIP’(Sx) Sn-;znc_l
X x=1

=1

Algorithm Theory Fabian Kuhn 12



Relation to Random Binary Search Trees

UNI

FREIBURG

Consider Recursion Tree: Label each subarray of size > 1 by the pivot
and each subarray of size = 1 by the element in it.

P

\[L%l,10,14,8,12,9,4,6,5,15,2,13,11]|
[3,1,4,6(5)2] [10,14,8,12),9,15,13,11]

 We get a binary search tree (BST) on the n elements

— Corresponds to the BST with a random insertion order

 #Hcomparisons of element x as non-pivot = depth of x in tree
— Our analysis shows that the height of a random BST is O(logn), w.h.p.

e #comp. of rand. quicksort = n - average depth in a random BST

Algorithm Theory Fabian Kuhn

13



UNI

Types of Randomized Algorithms

FREIBURG

Las Vegas Algorithm:

e always a correct solution

* running time is a random variable

 Example: randomized quicksort, contention resolution
Monte Carlo Algorithm:

e probabilistic correctness guarantee (mostly correct)

* fixed (deterministic) running time

 Example: primality test

Algorithm Theory Fabian Kuhn 14



