
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 1
Due: Friday, 27th of October, 2023, 10:00 am

Exercise 1: Landau and Recursions (8 Points)

(a) Is
(

log(
√
n)
)2 ∈ Θ(log n) true? Justify. (2 Points)

Consider two real square matrices X and Y each of size n × n. The goal is to find the matrix
multiplication of X and Y i.e. Z = X × Y , which is also of size n× n.

(b) Use the principle of divide and conquer to design an algorithm that finds Z in time O(n3) and
analyze its running time.
Hint: try dividing the matrices into submatrices of size n

2 ×
n
2 . (3 Points)

(c) Let X =

(
A L
G O

)
and Y =

(
T H
E O′

)
, where A,L,G,O, T,H,E,O′ are matrices of size n

2×
n
2 .

Let Z =

(
? + P4 − P2+? ?+?

?+? ? + P5 − P3−?

)
Fill in Z using the following n

2 ×
n
2 matrices:

P1 = A(H −O′),
P2 = (A + L)O′,
P3 = (G + O)T ,
P4 = O(E − T),
P5 = (A + O)(T + O′)
P6 = (L−O)(E + O′),
P7 = (A−G)(T + H)

then show that time complexity for finding Z can get significantly better than in part (b).

(3 Points)

Sample Solution

(a) False. We show that (log(
√
n))

2
/∈ O(log n) by contradiction. Suppose that (log(

√
n))

2 ∈ O(log n),
then there exists c > 0 and n0 ∈ N∗ such that for all n ≥ n0

(log(
√
n))

2 ≤ c log n
⇔ 1

4(log n)2 ≤ c log n
⇔ (log n)2 ≤ 4c log n
⇔ log n ≤ 4c
⇔ n ≤ 24c

if we choose n := max{d24ce+ 1, n0} ≥ n0, then d24ce+ 1 ≤ n ≤ 24c, which is a contradiction.

(b) We will assume n to be a power of two in both parts (b) and (c). The idea is to partition the
n× n matrix into 4 blocks (submatrices) of size n

2 ×
n
2 . Thus

X =

(
A L
G O

)
, Y =

(
T H
E O′

)
, Z =

(
Z1 Z2

Z3 Z4

)
,

where each of the submatrices are of size n
2 ×

n
2 . The matrix multiplication can now be seen as(

Z1 Z2

Z3 Z4

)
=

(
A L
G O

)(
T H
E O′

)
=

(
AT + LE AH + LO′

GT + OE GH + OO′

)
(1)

Thus, a matrix multiplication algorithm that uses divide and conquer can now: compute the
smaller multiplications of pairs of half-sized submatrices recursively (i.e. 8 of those products to
compute), and then for the combine step we have to do a constant number of matrix addition
steps (i.e. 4 in this case). Moreover, if n = 2, then the half-sized submatrices can be multiplied
in constant time.

Therefore if T (n) is the time that it takes to multiple two matrices of size n×n, then the running
time of the algorithm is given by the following recursion:

T (n) =

{
O(1) for n ≤ n0

8T (n/2) + 4O(n2) = 8T (n/2) + O(n2)

Finally, applying Master’s theorem gives us that T (n) ∈ O(n3).

(c) We will still partition each X,Y , and Z into 4 blocks (submatrices) of size n
2 ×

n
2 , but we will view

the partitioned matrix Z differently, we do so by filling the gaps of Z via comparing it with (1),
thus we get in the
top left: P5 + P4 − P2 + P6

top right: P1 + P2

bottom left: P3 + P4

bottom right: P1 + P5− P3− P7

Using the same divide and conquer strategy as in (b) will use up less number of recursive calls
and still a constant number of matrix addition steps for the combine step, hence the running time
is now given by the following recursion:

T (n) =

{
O(1) for n ≤ n0

7T (n/2) + O(n2)

Finally, applying Master’s theorem gives us that T (n) ∈ O(nlog 7) which is approx O(n2.8).

Exercise 2: K-th Smallest Element (5 Points)

Consider two arrays A and B of unique integers such that they are sorted in an increasing order and
of size m and n, respectively. Let k ≤ m,n, give an algorithm that finds the k-th smallest integer in
the sorted union of the two arrays in time O(log k). Argue correctness and analyze its running time.
Remark: for simplicity, one may consider k to be a power of two.

Sample Solution

The high level idea of the algorithm is as follows: we first notice that one can ignore all A[i] and B[j]
for k ≤ i, j ≤ m,n respectively, as we are looking for the k-th smallest element. For simplicity, we
assume that k is a power of two.

Now, we initiate i = k/2 and j = k − i and define a counter:=k/4. While the counter ≥ 1/2, check
if A[i − 1] ≥ B[j − 1], then we can ignore the second half of A, only consider the second half of B
and set i := i−counter and j := j+counter and update the counter:=counter/2, and recurse (now we
have the same subproblem as the original but with half the size of the problem of instance input);
else, we ignore the second half of B and only consider the second half of A and set i := i+counter and
j := j−counter and update the counter:=counter/2, and recurse.
At the end of the while loop, we are left with one element in A and one element in B, we compare
them and output the smaller one as the k-th element in the sorted union of the two arrays A and B.

The rough intuition of the correctness is that in every recursive step r = 1, ..., log k (inside the while
loop), we are identifying k/2r new distinct elements (all of them coming from either A or B) that we
can show that they are amongst the first k − 1 elements in the sorted array of A ∪ B. Thus at the
end of the while loop, we would have: identified all the k/2 + k/4 + ... + 2 + 1 = k − 1 (cf geometric
series) elements of the first k − 1 elements in the sorted array of A ∪B, and thus we would have also
figured out the indices i and j where i + j = k − 2 such that max{A[i], B[j]} is the k − 1-th smallest
element in the sorted array of A ∪ B. Moreover, since at the end of the while loop, we are left with
one element in A i.e. A[i + 1] and one element in B i.e. B[j + 1], the smaller of the two will be our
desired output i.e. the k-th smallest element in the sorted array of A ∪B.
Indeed, one can show that for every recursive step r ∈ {1, .., log k} of the while loop, we can identify
k/2r new distinct elements (all of them coming from either A or B) that we can show that they are
amongst the first k− 1 elements in the sorted array of A∪B and another k/2r new distinct elements
(all of them coming from either A or B) that we can safely ignore and show that none can be the
k-the smallest element in the sorted array of A ∪ B. Indeed, for r = 1, we look at the two medians
A[k2 − 1] and B[k2 − 1] and suppose w.l.o.g. A[k2 − 1] < B[k2 − 1], the algorithm can safely ignore the

second half of B, the reason is that in the sorted array of A ∪ B, element B[k2 − 1] can only appear

after all elements A[i] for all i ≤ k
2 − 1 appear (thus after at least k − 1 elements appearing). So for

all j > k
2 − 1, none of the B[j] elements can be the k-th smallest element in the sorted array of A∪B,

hence we can safely ignore them. Now, we can deduce that the first k/2 elements of A i.e. elements
A[i] for all i ≤ k

2 − 1, must be amongst the first k− 1 elements in the sorted array of A∪B, hence we
can ignore the first half of A and focus on the second half of A. Then one can continue the argument
for the rest of r-cases similarly or by induction on r .

The running time is O(2 log(k)) = O(log k), which can be seen as as if we are doing binary search on
both arrays.

Exercise 3: Triangle with Shortest Perimeter (7 Points)

Let P = {(xi, yi) ∈ R2 | i = 1, . . . , n} be a set of n points in R2. Given three distinct points a, b, c ∈ P
they span a triangle with perimeter

peri(a, b, c) = d(a, b) + d(b, c) + d(a, c),

where d(·, ·) determines the euclidean distance of two points.

(a) Assume e to be the shortest perimeter of a triangle formed by 3 points from P , how many triangles
(formed by 3 points from P) can there be in a rectangle of size e/5× e/4? (2 Points)

(b) Describe a O(n · log(n)) algorithm which finds the smallest triangle perimeter in P . Argue shortly
the correctness of your algorithm and its running time. (5 Points)

Sample Solution

(a) None, since in any rectangular of size e/5× e/4 there cannot be more than two points either from
Pl or Pr since the minimum perimeter of both left and right sets is e. Moreover, if we assume there

are 3 points from P inside a rectangular that exists fully on the left or right of the median(P) side
such that it is of size e/5 × e/4, then the perimeter of these three points will be < e (note that
the longest distance between any two points in a rectangular with size e/5× e/4 is less than e/3).

(b) This problem is similar to the problem of finding the closest pair in a set of points as discussed in
the lecture. Hence, we adapt that algorithm to solve the problem of finding the shortest triangle
perimeter. To do this, only the combine part of given algorithm in the lecture needs to be
modified to solve this problem.

Algorithm 1 ShortestPeri(P)

Input: A set P of n points in R2 sorted by x-coordinate
Output: Shortest triangle perimeter
if |P | < 3 then

Sort P according to y-coordinate return ∞ and sorted P

x0 ← median(P)
Divide the points into the two sets Pl and Pr (almost equal in size) by their x-coordinate

. let xp be the x-coordinate of p
. division such that: xp ≤ x0 for all p ∈ Pl and xp ≥ x0 for all p ∈ Pr

el ← ShortestPeri(Pl)
er ← ShortestPeri(Pr)
Merge sorted Pl and Pr to obtain sorted P by y-coordinate

. similar to Mergesort
e← min{el, er}
S := {p ∈ P : |x0 − xp| ≤ e/2}
e′ ← minLR(Pl ∩ S, Pr ∩ S, e)
return min{e, e′} and P sorted by y-coordinates

Algorithm 2 minLR(L,R, e)

e′ ←∞
for z inL in increasing order by y-coordinate do

Mz = {p ∈ L ∪R||yz − yp| ≤ e
2} . yp is the y-coordinate of point p

for triangle (z, p2, p3) ∈Mz do
e′ ← min{e′, peri(z, p2, p3)}

return e′;

Implementation and Running time

Pre-Sorting

The algorithm assumes that the input set P is sorted according to its x-coordinates. This can be
done in a precomputation in O(n · log(n)).

Divide

x0 can be found in O(n) and the set P can be split into Pl and Pr in O(n) as well. The division
step can be implemented such that Pl and Pr are sorted according to their x-coordinate as well.

Conquer/Correctness

After dividing the points into two sets with equal sizes, there can be three cases for those three
points that span the triangle with shortest perimeter:

(a) they are all in Pl,

(b) they are all in Pr,

(c) at least one of them is in Pl and at least one of them is in Pr.

The minimum perimeter of the first two cases is e and obtained by the recursion. The third case
is taken care of in minLR(Pl ∩S, Pr ∩S, e): It is sufficient to check triangles (p1, p2, p3) such that
p1 ∈ Pl ∩ S, p2 ∈ Pr ∩ S and p3 ∈ (Pl ∪ Pr) ∩ S. (otherwise, there should be at least one point
outside of S, w.l.o.g. let p1 /∈ S. Then d(p1, p2) > e

2 and d(p2, p3) + d(p3, p1) > d(p1, p2) > e
2

(triangle inequality for d(·, ·))). Hence peri(p1, p2, p3) would be greater than e and does not have
to be considered). Furthermore a fixed z = p1 ∈ Pl the perimeter peri(z, p2, p3) can only be less
than e if the y-coordinates of z and pi, i = 1, 2 do not differ by more than e

2 . Hence it is correct
to only consider triangles which z forms with points from Mz.

Sorting according to y-coordinate:

As in Mergesort the merge of the sorted sets Pl and Pr can be done in O(n).

Computing e′ with minLR():

A fixed point z cannot form a triangle with perimeter less than e with points outside of Mz (a
similar argument as when we restricted investigation to the set S). (The algorithm uses that
L and R are sorted according to y-coordinates to determine Mz in time O(n)).

The outer loop in minLR() is run through at most |L| times. The crucial point now is that
|Mz| ≤ C for some constant C. Thus the inner loop is run through at most C times, i.e., the
running time of minLR() is in O(|L|).
Proof of |Mz| ≤ 24 for all z ∈ Pl:

We divide Mz into 10 rectangles of size e/5× e/4 each. In any rectangular of size e/5× e/4 that
is fully contained in the left or right side of the median(P), there cannot be more than two points
either from Pl or Pr a shown in part (a) of the exercise. Now there’s a small subtilty that for the
two e/5× e/4-sized rectangles in the middle (the ones where the median cuts them), each one of
them will be divided in two equal smaller rectangles of size e/10×e/2 where one is fully contained
in the left and the other in the right, and by the same reasoning as in part (a) of this exercise the
smaller rectangles can’t have more than 2 nodes from P inside them, thus |Mz| ≤ 24 and because
|Mz| ≤ 24 we need to check only

(
24
2

)
triangles in the inner most for-loop.

Combining the running times of dividing (O(n)), merge for y-coordinate sorting (O(n)) and con-
quering/computing e′ (O(n)) we obtain that the recurrence relation is,

T (n) = 2T (n/2) +O(n), T (1) = 1.

Using Master theorem we know that T (n) ∈ O(n · log(n)). Together with the sorting part, the
total running time for the Algorithm 1 is O(n · log(n)).

