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Exercise 1: Faster Polynomial Multiplication (14 Points)

Let p(z) := —32? + 2 + 6 and ¢(z) := 22 + 4. The goal is to compute p(z) - ¢(z) with the help of the
FFT algorithm. Please, make use of the following sketch:

1. Tlustrate the divide procedure of the algorithm (for both functions p and ¢). More precisely, for
the i-th divide step (with focus on p(z)), write down all the polynomials p;; for j € {0, ...,2—1 }
that you obtain from further dividing the polynomials from the previous divide step i — 1 (we
define poo := p, and the first split is into pjp and p;; and so on...).

2. Tllustrate the combine procedure of the algorithm (for both functions p and ¢). That is, starting
with the polynomials of the smallest degree as base cases, compute the DFT of p;; (respectively
¢ij) bottom up with the recursive formula given in the lecture. The recursion stops when
DFTg(poo) (respectively DF'Tg(qoo)) is computed i.e., we know the function’s values at the
(8-th) roots of unity.

3. Multiply the polynomials. More specific, give the point value representation of p(z) - (), i.e.,
(w8, y0), (g, 1), - - » (w§, y7).

4. Use the inverse DFT procedure from the lecture to get the final coefficients for p(z) - ¢(x). To
do that efficiently, first compute the DFTg(f) where f(z) :=yo +%1 -2 + ... +y7 - 27 and then
compute the coefficients ay, for k € {0,1,...,7} of p(z) - ¢(x) (using that ap =1/8 - f(ws_k)).

Write down all intermediate results to get partial points in the case of a typo.

Sample Solution

1. Note that for the divide step we want to preserve that p(z) = po(2?)+2z-p; (2?) where py contains
the even coefficients and p; the odds.
divide p:

poo = —32° +x+6

pro=—3x+6
pi1=1

p20 =6

p21 = —3

p22 =1

p23 =0



divide ¢:

q00:23:2—|—4
qi0 = 2r + 4
q1 =0
g0 = 4
Go1 = 2
g2 =0
q23 =0

2. In the combine step we compute the required values in a bottom-up fashion using the following
formula from the lecture:

(k) Do w?V/Q) +wk -y (wﬁ[ﬂ) if k < N/2
Py ) ‘= - . .
Do w];,/é\m)—i-w?v-pl (fwfv/évﬂ) if k> N/2

combine p:

pio(wf) = pao(wy) +w§ - par(wh) =6 +1-(=3) =3
pro(wy) = poo(wy) + wi - pa1(wy) = 6+ - (=3) = 6 — 3
pro(w3) = pao(wd) + wi - por(wy) =6 —1-(=3) =9
pio(w§) = pao(ws) + wj - par(wy) = 6 — i - (=3) = 6.+ 3i
pi1(w}) = paa(wy) + wf - paz(wy) = 1
pi1(wi) = paa(ws) + wj - paz(wy) = 1
pi1(w) = paa(wy) + wi - pos(wh) =1
pi1(w}) = paa(wy) + wj - paz(wh) =1
Now we can go to the next recursion level. Note that we have wd = 1, wl = %, wi = 1,
wg’ = _\l/%'i, wg‘ =—-1, wg = fwé, wg = —1, wg = fwg.

V2 V2




combine ¢:

44+1-2=6

q10(w]) = gao(wh) + w - ga1 (wy)
qr0(w}) = gao(wy) + wy - ga1 (wy)
qo(wi) = qo(wh) + wj - g21 (w)
qro(w}) = qo(wy) + wj - g1 (wy)

441-2=4+2
4-1-2=2

4 —43-2=4-2;
0
- qa3(wy) =0

g11(w3) = go2(w) + wi - go3(w)
g11(w}) = ga2(wy) + wi - go3(w3)

1
4

gao(ws) +w

q11(w}) = ga2(w) 4+ w} - gos(w9)

a1 (wy)

0
0

0

qlo(wi’) + wg : Q11(wi) =4—2
4

qro(wy) + wg - qui(wy) = 4 + 2

qro(w)) +wl - qu1(w)) = 6
qro(wy) + w3 - qui(wy) =2

CJoo(wg )
qoo(wg)
qoo(wg)
qoo(wg)
(JOO(”LUé1 )
qoo(wg)

=6

) — wg - qr1(w})

qio(w

1
8

4+ 2i
2

- qu1(wy)

) — w§ - qui(wi)
) — wi - qu1(w})

qro(wy) — w

2
4

= qio(w

qo0(wg)

4—2

= qio(w}

QOO(wg )

3. Multiply:

)z) (442i) =30 +V2+3V2-i
>-i>-(42¢):30\/§+3\f2-¢

1

=

1
1

V2

(9+i)-2=18+2i
(61+<3+
V2

1
6+—=+ -3+
0+ v+
2.6=12

4.6=24

poo(wg) : CIoo(wg)
poo(ws) - goo(ws)
poo(w3) - goo(wg)
poo(wg) - goo(wg)
poo(ws) - goo(ws)

30— vV2—-3v2-i

)ei)- ez

(e (>

V2
(9—i)-2=18—2i

poo(wg) - qoo(wg)
poo(w) - goo (wg)

Thus, p(x) - g(x) has the following point value representation

wi, 30 + V2 — 3v2 - 9)

wg, 30 — V2 — 3v2 - 4),

w, 18 — 2i),

w3, 30 — V2 +3v2 1),

wa,12),

(wg,30 + V2 +3V2 - 4),

(w3, 18 + 2i),

(wg, 24),

(
(
(
(
(



4. Inverse DFT: To efficiently compute the inverse DFT, we again have to do some bottom-up
computation, now based on the polynomial f(z) := yrx” + yex® + ... 4+ yo, where the y; values
are the y-values in the point value representation of p(z) - q(x).

foo=f
fio = y6r® + yaz® + yax + yo
fi1 = yra® + ysa® + ysz +

J20 = yax + Yo
Ja1 = Y6 + Y2
Ja2 = ys + 1
Ja3 = yrx + y3
f30 =90 =24
fs1=ya=12

fao =1y =18+ 21
f33 = ye = 18 — 2i
faa=11=30+V2+3V2-i
f35 =y5 =30 — V2 — 3V2 i
fae =y3 =30 —V2+3vV2-i
fsr=yr =30+ V2 -3V2-i

fao(wy) = fao(w?) +wy - far(wl) = 24+ 12 = 36
fao(wy) = fao(w?) + wy - far(wy) = 24 — 12 =12
far(wh) = faa(w}) + wd - faz(w}) = 18 4 2i + 18 — 2i = 36
for(wd) = fao(w?) +wd - faz(w?) =18 4+ 20 — 18 + 2i = 4i
fao(w03) = faa(w?) + w3 - fa5(w?) =30+ V2 +3v2-i+30 - V2 -3V2-i =60
foo(w3) = faa(wl) +wj - fa5(w]) =30+ V2 +3v2-i— (30 — V2 — 3v2 i) = 2V2 + 6V2i
faa(w3) = fae(w?) + w3 - far(w?) =30 — V2 +3v2-i+30+ V2 - 3V2-i =60
foz(wd) = fag(wd) +wi - far(w?) =30 — V2 +3v2-i — (30 + V2 — 3v2 i) = —2v2 + 6v/2i
Fro(w]) = fao(wd) + w} - for(wy) = 36 + 36 = 72
fro(ws) = fao(wy) + wy - for(wy) =12 +i-4i =8
Fro(w}) = fao(wy) +wi - far(wh) = 36 — 36 =
fro(w) = fao(wy) +wd - for(wy) =12 —i-4i = 16
fr1(w?) = fao(w?) + wd - foz(wl) = 60 + 60 = 120
fi1(w)) = fao(wd) +wj - fog(ws) = 22 + 6V/2i +i(—2V2 + 6v/2i) = —4V2 + 4V/2i
fin(wf) = faa(wy) + wi - faz(wh) = 60 — 60 = 0
fri(w?) = foo(wd) + wi - foz(wd) = 2v/2 4+ 6v/2i — i(—2v2 + 6v/2i) = 8V2 + 8V/2i



And finally:

Foo(w?) = Fro(wd) +wl - f1(wd) = 72+ 120 = 192

foolwd) = Frolw}) + wd - fua(wl) =8+ - ;(_m L AV3i) = 0
foo(w?) = fro(w?) + wi - fri(w?) =04i-0=0

fon(wd) = fro(wd) +ud - fr () = 16+ =2 (8V2 +8V2i) =0
foo(wg) = fro(w§) — w - fi1(w]) = 72 — 120 = —48

Joo(wd) = fro(wh) — wh - fra(w}) = 8- 1;'(—4& VB =16
Joo(wd) = fro(w}) — wd- fra(wd) =0—i-0=0

foo(wd) = fro(w}) — wd - fra(w) = 16 - ‘g%wm 8v/2i) — 32

As stated in slide 10 of the lecture, one can compute the coefficients by ax = 1/8 - f(wg_k), s0:

ap = 192/8 = 24

ap =32/8=14
az =0/8=0

a3 =16/8 =2
ay = —48/8 = —6
a5 =0/8 =0
ag=0/8=0

a7 =0

= p(x) - q(v) = —62* + 223 + 42 + 24.

Exercise 2: FFT Application (6 Points)

Let A, B be two sets of integers between 0 and n i.e., A, B C {0,1,2,...,n}. We define two random
variables X4 and Xp, where X4 is obtained by choosing a number uniformly at random from A and
Xp is obtained by choosing a number uniformly at random from B. We further define the random
variable Z := X4 + Xp. Note that Z can take values in the range 0, ..., 2n.

Give an O(nlogn) algorithm to compute the distribution of Z. Hence, the algorithm should compute
the probability P(Z = z) for all z € {0,...,2n}. Note that Zgio P(Z = z) = 1. You can use the
algorithms of the lecture as a black box. State the correctness of your algorithm and also explain the
runtime!

Sample Solution

Our algorithm works as follows, first we construct a polynomial pa(z) = Y a2’ where a; := 1 if
i € A and a; := 0 otherwise. In the same manner we construct the polynomial pp(x) = Y ;" b;x.
Note that those constructions require only linear time.

Now we multiply those polynomials i.e., pz(z) = pa(z) - pp(z) = Z?go c;xz'. Using FFT, this multi-
plication can be computed in O(nlogn) time. This gives us the coefficients of pz(x) : ¢, ..., con.
The resulting distribution will be determined in the following way, for some given z € {0,...,2n}:
P(Z =z):= %. Computing this value for each z also takes linear time. It follows that the overall

runtime is dominated by the FFT step and therefore is O(nlogn).



It remains to show that P(Z = z) = ﬁ is true. First take note that we have P(X4 = k) = ‘“Af’“‘,
and similarly P(Xp = k) = ‘%“‘. Further, by the definition of the multiplication of polynomials, we

have ¢, = Zf:o a; - bp_;. It then follows:
P(Z=2)=P(Xa+ Xp=2)

z
=Y P(Xa=iAXp=2z—1i)
1=0

=3 P(Xa=i) P(Xp=z—i)
=0

1 z
= . i by
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