
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 4
Due: Friday, 17th of November, 2023, 10:00 am

Remark: You are required to use the principle of dynamic programming in all of your algorithms.
It is preferable if you write the algorithms in pseudocode and to write down the recursions.

Exercise 1: Leaf to Leaf (10 Points)

Given a rooted tree T = (V,E) with n nodes such that each node is assigned a unique integer value.
Note that we define a rooted tree to be a tree where one node has been designated the root.

(a) Find an algorithm that runs in O(n) and computes the maximum sum of the node values from the
root to any of the leaves without re-visiting any node. Argue correctness and analyze its running
time.

Figure 1: This is an example to our problem where the node with value 4 is the root. Thus, the path
marked in red has the maximum sum of values of nodes in its path from the root to a leaf, hence your
algorithm should output 4+5+11+20=40.

(4 Points)

(b) We generalize the problem and ask you to design an algorithm that runs in O(n) and calculates
the maximum sum of the node values from any leaf to any other leaf without re-visiting any node.
Argue correctness and analyze its running time. (6 Points)

Sample Solution

First consider T = (V,E) to be a rooted tree with node r ∈ V as its root. For convenience, we define
T (r) to be the subtree in T rooted at r ∈ V . To have a parent and child reference for every node, we
do a preprocessing step where every node will have a pointer reference to its parent and that can be
done in |E| = n − 1 ∈ O(n) time (e.g. one may start from the designated root and by doing a BFS
one can orient every edge towards the root). Let value(r) denote the unique designated value of node
r. Let Nc(r) = {v ∈ V | v is a child of r in T}.

(a) Algorithm (and correctness) idea: Let OPT (r) denote the maximum sum of the node values
from the root r to any of the leaves in T (r) without re-visiting any node. Assume w.l.o.g that Pr,v

is the path starting from root r, ending with leaf v in T (r),and the (unique) optimal path for our
problem i.e. the sum of the nodes values on Pr,v is OPT (r) (it is unique because all integers are
assumed distinct). Therefore, the portion of Pr,v starting from the child of r which is on Pr,v to
leaf v must itself be the best optimal path from any child of r to any leaf in T (r), otherwise we
can construct another path from the root r to a leaf in T (r) whose sum of its path nodes values
are larger than that of Pr,v, thus Pr,v is not optimal, which is a contradiction. Hence, we can solve
the problem via the following recursion:

OPT (r) := value(r) + max
u∈Nc(r)

OPT (u), OPT (r) = value(r) if V := {r}

We propose the following algorithm using memoization:

Algorithm 1 Root2Leaf(r) . assume memo1 is a global dictionary initialized with Null and
given T (r)

if T (r) is only node r then return value(r) . base case

if memo1[r] 6= Null then return memo1[r] . decision was made before

memo1[r] ← value(r) + maxu∈Nc(r) Root2Leaf(u) . Memoization
return memo1[r]

Running time: A naive running time analysis would be the following: we have n subproblems
all in all (i.e. one for each node where they are of the form OPT (r)) and each is computed once (in
general due to memoization). Moreover, for each subproblem we have to do one addition and find
the maximum value of at most ∆ values i.e. finding the maximum amongst each node’s children,
where ∆ is the maximum degree of a node in the given graph thus giving us a O(n∆) ∈ O(n2)
running time.

A linear time running time analysis can be achieved by noticing that each node v has its memo1[v]
or OPT (v) value read by only its parent at most once. Moreover, the cost of the whole algorithm
can be seen as the sum of all these reading steps (up to a constant multiplicative factor since we
have e.g. some constant arithmatic operartions to do per each node as well) and we have n of
those, thus we have a running time of O(n)1.

NB One may notice that storing the results of the subproblems is not necessary i.e. memoization
and thus dynamic programming approach don’t seem necessary, since in the whole algorithm we
only call for each subproblem one time, thus a recursive algorithm is enough to solve the problem
in O(n). However, asking for a dynamic programming algorithm for this part is appropriate and
helpful if we want to solve the upcoming part.

(b) Algorithm (and correctness) idea: Let OPT ′(r) denote the value of the maximum sum of the
node values from any leaf u to any other leaf v in T (r) without re-visiting any node in T (r) . Let
T (rrest) denote the subtree T (r) after removing all nodes (except root r) that belong to the root
to leaf optimal path in T (r) (note that this process can created disconnectthe graph, so we also
remove any node that gets disconnected from the root r afterwards). Let OPT (rrest) denote the
value of the maximum sum of the node values from root r to any other leaf v without re-visiting
any node in T (rrest).

1It may also help to think of how a bottom top approach solution works i.e. when we start memoizing from the leaves
and add the maximum of leaves to the root of every sub-tree. At the last step, there will be the root and the sub-trees
for each child under it, adding the value at the node and the maximum of sub-tree will give us the maximum sum of the
node values from root to any of the leaves.

Now, we observe the following: either r is on the optimal path of our leaf to leaf problem in T (r)
or it is not. Hence, we can solve the problem via the following recursion:

OPT ′(r) := max

{
OPT (r) +OPT (rrest)− value(r) , if r is involved

maxu∈Nc(r)OPT
′(u) , if r is not involved

and for the base case OPT ′(r) = value(r) if V := {r}
Note that we can easily modify Algorithm 1 on input T (r) to get a new O(n) dynamic programming
algorithm that gives us the value of OPT (rrest) and we call this function Root2Leaf(rrest) (the
idea is to first run Algorithm 1 on input T (r) and keep track of the nodes on the optimal path
then remove them, afterwards we can run again Algorithm 1 on the remaining subtree rooted at
r).

Algorithm 2 Leaf2Leaf(r) . assume memo2 is a global dictionary initialized with Null and
given T (r)

if T (r) is only node r then return value(r) . base case

if memo2[r] 6= Null then return memo2[r] . decision was made before

memo2[r] ← max

{
Root2Leaf(r) + Root2Leaf(rrest)− value(r)
maxu∈Nc(r) Leaf2Leaf(u)

. Memoization

return memo2[r]

Running time : A similar running time analysis as above will give us linear in n running.
We have here 3n subproblems all in all (i.e. 3 for each node where they are of the form
OPT (r), OPT (rrest), OPT

′(r)) and each is computed once (due to memoization). Moreover,
each node v has its memo[v] values for Root2Leaf(v), Root2Leaf(vrest), Leaf2Leaf(v) used by
only its parent O(1) number of times. Finally, the cost of the whole algorithm can be seen as
the sum of all these reading steps (up to a constant multiplicative factor since e.g. we also have
some constant arithmatic operartions to do per each node as well) and since we have 3n of these
reading steps, thus we have a running time of O(n). 2

Exercise 2: Mutually Involved Bitstrings (10 Points)

Consider the following bitstrings A = a1a2...am, B = b1b2....bn, and C = c1c2...cm+n. We say that A
and B are mutually involved in C if C can be obtained by rearranging the bits in A and B in a way
that maintains the left-to-right order of the bits in A and B.
For example A = 010 and B = 10 are mutually involved in C = 01100 but not in 00101.

Give an algorithm that runs in O(m · n) and determines whether A and B are mutually involved in
C or not. Argue correctness of your algorithm and analyze its running time.

Sample Solution

Algorithm (and correctness) idea: For convineance, we can redefine A = a0a1a2...am, B =
b0b1b2....bn, and C = c0c1c2...cm+n, where a0 = b0 = c0 = ε (ε is the empty string). For i, j ∈
{0, 1, ...,m} × {0, 1, ..., n}, define M(i, j) to be the boolean value that represents true if and only if
Ai := a0a1a2...ai and Bj := b0b1b2....bj are mutually involved in Ci+j := c0c1c2...ci+j . The idea is that
if Ai and Bj are mutually involved in Ci+j , then ci+j has to be either ai or bj . So to evaluate M(i, j),

2like before another way that helps is to try to see the solution as a bottom top approach, thus starting from the
leaves and building our way up, thus we notice that over every edge {u, v} we will do a O(1) number of computation (
one for each of the OPT (u), OPT (urest), OPT ′(u) calls and a constant number of arithmatic operations at the parent
node v) until we find the final solution when at the root. Thus, the total cost is the sum of all what we described that
would happen over every edge and since we have O(n) edges in a tree, we get an O(n) running time.

we first check if this condition is satisfied: if it is not, then we can directly decide that M(i, j) = false;
otherwise, we then accordingly recurse on the remaining part of Ci+j−1 and check whether Ai−1 and
Bj or Ai and Bj−1 are mutually involved in Ci+j−1, and if so we can finally decide that M(i, j) = true,
else it is false.
We thus obtain the following recursion:

M(i, j) =

true if i = j = 0

M(i− 1, j) if ai = ci+j ∧ bj 6= ci+j

M(i, j − 1) if ai 6= ci+j ∧ bj = ci+j

M(i− 1, j) ∨M(i, j − 1) if ai = bj = ci+j

false if ai 6= ci+j ∧ bj 6= ci+j

Based on that, we propose the following algorithm using memoization:

Algorithm 3 Mutually-Involved(m,n) . memo is a 2-dimensional array initially empty

if m = n = 0 then return true . base case
if memo[m,n] 6= Null then return memo[m,n] . decision was made before

memo[m,n] ←
∨

Mutually-Involved(m− 1, n) if am = cm+n

Mutually-Involved(m,n− 1) if bn = cm+n

false otherwise

. Memoization

return memo[m,n]

Running time: we have (m+ 1)× (n+ 1) entries in our 2D array, i.e. (m+ 1)× (n+ 1) subproblems.
Notice that when filling the array and due to memoization, we compute each entry value memo[i, j]
for i, j ∈ {0, 1, ...,m} × {0, 1, ..., n} at most once. Also, each computation of memo[i, j] costs O(1) in
the current step (i.e. not counting the cost of recursive calls, thus the only thing we are doing is
determining whether the if clauses are satisfied and then evaluating the ∨ operator). Therefore, the
total running time is O(m · n).

