
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory
Sample Solution Exercise Sheet 5

Due: Friday, 24th of November 2023, 10:00 am

Exercise 1: Amortized Analysis (4+4+4 Points)

Your plan to implement a Stack with the classical operations push, pop and peek. As underlying
data structure you use a dynamic array that will grow its size whenever ’many’ elements are stored
and on the other hand also shrinks its size when only a view elements remain in the array. In the
following let ni be the number of elements stored in the array and let si be the size of the array after
the i-th operation.

• Before you push a new element x to the array, you check if ni−1 + 1 < 80% · si−1. If this is the
case then you simply add x. We say for simplicity, that this can be done in 1 time unit. If on
the other hand ni−1 + 1 ≥ 80% · si−1, you set up a new (empty) array of size si := 2si−1 and
copy all elements (and x) into the new one. We assume this can be done in si−1 time units1.

• To pop an element from the array, you first check if ni−1 − 1 > 20% · si−1. If this is the case
then pop x within 1 time unit. If the table size is small, say si−1 ≤ 8, you also just pop x. But,
if ni−1 − 1 ≤ 20% · si−1 and si−1 > 8, create a new (empty) array of size si := si−1/2 and copy
all values except x into this new array. By assumption, this step takes si time units.

• The peek operation returns the last inserted element in 1 time unit. Note that state of the
array does not change, i.e., ni−1 = ni and si−1 = si.

Initially, the array is of size s0 = 8. Assume that this initial step can also be done in 1 time unit.
Note that by this initial size and the definition of the pop method we have si ≥ 8 for all i ≥ 0. Also
note that after every operation that resized the array at least one element can be pushed or popped
until a further resize is required.

a) Let i be a push operation that resized the array. Show that the following holds.

0.4 · si ≤ ni < 0.55 · si
Further, show that if i is a pop operation that resized the array, the following holds.

0.25 · si < ni ≤ 0.4 · si

b) Use the Accounting Method from the lecture to show that the amortized running times of
push, pop and peek are O(1), i.e., state by how much you additionally charge these three operation
and show that the costs you spare on ’the bank’ are enough to pay for the costly operations.
Hint: Use the previous subtask, even if you didn’t manage to show them.

c) Show the same statement as in the previous task, but use the Potential Function Method this
time, i.e., find a potential function φ(ni, si) and show that this function is sufficient to achieve
constant amortized time for the supported operations.
Hint: There is not just one but infinitely many potential functions that work here. However, you
may want to use a function of the form c0 · |ni − c1 · si| for some properly chosen constants c0 > 0
and c1 > 0.
1For a simpler calculation we use normalized time units, such that all the operations that would take O(1) time will

take at most 1 time unit and operations that would take O(si−1) time will take at most si time units.

Sample Solution

a) Push: It is clear that for the previous state ni−1 < 0.8si−1 is true (otherwise there would have been
a resize before) and by definition also ni−1 + 1 ≥ 0.8si holds. Since ni = ni−1 + 1 and si = 2si−1
we directly get 0.4 · si ≤ ni < 0.4 · si + 1 ≤ 0.525 · si (because si ≥ 8). This implies the statement.
Pop: For similar reasons as before, we have 0.2 · si−1 < ni−1 ≤ 0.2 · si−1 + 1. Substituting
ni = ni−1 − 1 and si = si−1/2 we get 0.4 · si < ni + 1 ≤ 0.4 · si + 1. By subtracting all sides by 1
and use that 1 ≤ si/8 we get 0.275 · si < ni ≤ 0.4 · si. This implies the statement.

b) We charge all 3 operations by 25 ’dollars’. Every push, pop or peek operation costs one actual
dollar (not counting resizing) and puts the remaining 24 in the bank to pay for resizing. Now, let
us estimate how much money is at least in the bank before the next resizing takes place. Observe
that we can ignore peek operations in the following, since they just increase our bank account
(by 24 per operation) and do not change the state of the array. Let us for now assume that the
last operation (say operation i) did a resizing and currently there is no money at our account.
If this last resize operation was ’push’, then we have 0.4 · si ≤ ni < 0.55 · si. Thus, the next
costly operation can not happen before (0.8− 0.55)si = 0.25si push or (0.4− 0.2) · si = 0.2si pop
operations. Before we proceed, let us see how it looks if operation i was a pop operation. By the
statement of the previous task we have the next costly operation not before (0.8− 0.4) · si = 0.4si
push or (0.25−0.2) ·si = 0.05 ·si pop operations. By this analysis, the worst-case (i.e., the shortest
chain of operation until the next resize) is a costly pop operation that is followed by more than
0.05 · si additional deletings. Since we charge both operation with the same amortized cost, we
clearly have more ’money’ on our account in the other cases. Also observe that if we alternate
between pushing and deleting over and over, the hash table is never resized, so we save up a lot
of money in the bank. For that, assume operation i is a pop operation and from here on at least
0.05 · si further pop operations follow until the next resize comes. The money on the bank after
these many operations is at least (25 − 1) · 0.05 · si = 1.2 · si. Because the costly operation costs
1 ·si, we can afford it and thus, the bank account never drops below zero. Therefore, the amortized
cost of pop is O(1). This, by above’s analysis, also implies amortized costs of O(1) for push (as
well as for peek).

c) We define our potential function by φ(ni, si) := c0 · |ni−c1 ·si| and start by guessing some constant
c1 ∈ [0, 1]. For some intuition: We want our potential to be large before a resizing operation and
small (close to zero) after a resizing operation. To make sure that the potential before resizing is
not 0, we have to choose c1 6= 0.8 in the push case and c1 6= 0.2 in the pop case. So let us ’guess’
c1 = 0.4 and show later that it works. Now we go through all operations and proof that by choosing
a large enough c0 > 0, all amortized costs are in O(1). Note that we are going into 5 cases now,
that we call peek, cheap push (push without resizing), costly push (includes resizing), cheap
pop (deleting without resizing) and costly pop (includes resizing). Like in the lecture, we notate
the actual cost of operation i by ti and its amortized costs by ai := ti + φ(ni, si)− φ(ni−1, si−1).

Peek Here we have si = si−1 and ni = ni−1 and thus,

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni − 0.4si|
= 1

Cheap Push Here we have ni = 1 + ni−1 and si = si−1

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni − 1− 0.4si|
≤ 1 + c0 · |ni − 0.4si| − c0 · (|ni − 0.4si| − 1)

≤ 1 + c0

Note that this implies that ai ∈ O(1) if c0 is a fixed constant.

Costly Push Here we have ti = si−1, si = 2si−1, ni = ni−1 + 1 and by the first subtask
0.55si > ni ≥ 0.4si

ai = si−1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|

=
si
2

+ c0 · |ni − 0.4si| − c0 · (|ni − 0.2si| − 1)

≤ si
2

+ c0 · (ni − 0.4si)− c0 · (ni − 0.2si) + c0

≤ si
2
− 1

5
· c0 · si + c0

≤ c0

That the last step only follows if we choose c0 ≥ 5
2 .

Cheap Pop Here we have ni = −1 + ni−1 and si = si−1

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni + 1− 0.4si|
≤ 1 + c0 · |ni − 0.4si| − c0 · |ni − 0.4si|+ c0

≤ 1 + c0

Costly Pop Here we have ti = si−1, si = si−1/2, ni = ni−1−1 and by the first subtask ni > 0.25si
and ni ≤ 0.4si.

ai = si−1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 2si + c0 · |ni − 0.4si| − c0 · |ni + 1− 0.8si|
≤ 2si + c0 · (0.4si − ni)− c0 · (0.8si − ni) + c0

= 2si −
2

5
· c0 · si + c0

≤ c0

That the last step only follows if we choose c0 ≥ 5.

Final Statement It is clear by the previous calculations that if we choose c0 := 5 the amortized
costs for all 3 operations are at most ai ≤ 1+c0 = 6 and therefore constant. The potential function
used is

φ(ni, si) := 5 · |ni −
2

5
· si| = |2 · si − 5 · ni| ≥ 0

Remark : We have that φ(n0, s0) = 5 · |0 − 2
5 · 8| = 16 and hence

∑
i ti ≤ 16 +

∑
i ai. This does

not completely match with the definition of amortized costs, however we can fix this problem by
choosing the potential function φ′(ni, si) := 5 · |ni− 2

5 ·si−
16
5 |. Here we have φ′(n0, s0) = 0. Further

we have that for all i, |φ′(ni, si)− φ(ni, si)| ≤ 16 holds, and thus we can simply adjust the 5 cases
and show that for each operation it follows ai ≤ ti +φ(ni, si)−φ(ni−1, si−1) + 2 · 16 ≤ 6 + 32 = 38.

Exercise 2: Union-Find (2+2+4 Points)

In the lecture we have seen two heuristics (i.e., the union-by-size and the union-by-rank heuristic)
to implement the union-find data structure. In this exercise we will focus on the union-by-rank
heuristic only! Note that the rank is basically the height of the underlying tree. This is not true if
we use path compression as the height of the tree might change; but the rank is still an upper bound
on the actual height of the tree. To solve the following tasks consider the union-find data structure
implemented by disjoint forest using union-by-rank heuristic and path compression.

(a) Give the pseudocode for union(x, y).
Remark: Use x.parent to access the parent of some node x and use x.rank to get its rank. The
find(x) operation is implemented as stated in the lecture using path compression.

(b) Show that the height of each tree (in the disjoint forest) is at most O(log n) where n is the
number of nodes.

(c) Show that the above’s bound is tight, i.e., give an example execution (of makeSet’s and union’s)
that creates a tree of height Θ(log n). Proof your statement!

Sample Solution

(a) The pseudocode is given below.

Algorithm 1 union(x, y)

a := find(x)
b := find(y)
if a.rank > b.rank then

b.parent := a
return a . returning the root of the new set (optional)

else
a.parent = b
if a.rank = b.rank then

b.rank = b.rank + 1

return b . returning the root of the new set (optional)

(b) Since the rank is an upper bound on the height of a tree, we will show that the maximum rank of
a tree is O(log n). We will show by induction over the rank of the tree that for any tree T with
T.rank = r, T contains at least |T | ≥ 2r many nodes. We start our induction at r = 0. Surely,
only trees with exactly one node can have a rank of 0, what fulfills the condition.

Induction Hypothesis: For a fixed r, any tree Tr of rank r contains at least 2r nodes.

Induction Step: Let Tr+1 be a tree with rank r+ 1. Since the rank of a tree increases only then
when it is merged with another tree of equal rank, we can say w.l.o.g that Tr+1 was created by
the union of trees Tr and T ′r, both with rank r. Due to our hypothesis, we know |Tr| ≥ 2r and
|T ′r| ≥ 2r. Since Tr+1 contains at least the nodes of Tr and T ′r we have

|Tr+1| ≥ |Tr|+ |T ′r| ≥ 2r + 2r = 2r+1

which ends the inductive proof.

We can conclude that for any tree Tr: n ≥ |Tr| ≥ 2r ⇒ height(Tr) ≤ r ≤ log2 n.

(c) For simplicity, assume we have n = 2k nodes that we add to our union-find data structure using
makeSet. We now have n trees of rank 0. Next, we union all pairs of trees s.t. we get n/2 trees of
rank 1. Again, we union over all pairs of trees and get n/4 trees of rank 2. Continuing like this, we
will finally get a single tree with rank k. Note that even with path compression, the rank of these
trees is equal to its height, since we can always use the roots of each tree for our union-method
from (a) and therefore the find operation will not rearrange the pointers of the children. Hereby
our execution leads to a tree with height = k = log2 n.

Note that if n is not a power of 2, we can still use the same construction and finally get 2 trees where
the larger one contains more than n/2 of the nodes. This tree’s height is log2 n− 1 = Θ(log n).

