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Exercise 1: Fibonacci Heap - Amortized (6 Points)

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a child
and consequentially also do not cut marked parents of a node that needs to be cut out due to a
decrease-key-operation. Is the amortized running time

(a) ... of the decrease-key-operation still O(1)? (2 Points)

(b) ... of the delete-min-operation still O(log n)? (4 Points)

Explain your answers.

Sample Solution

Two reasonable answers would be as follows.

(a) Yes. Not having to cut all your marked ancestor nodes only makes decrease-key faster. In fact
each individual decrease-key operation has now runtime O(1). (2 Points)

(b) No. The reason is that we loose the recursive property that a given node with rank i has i children
that have at least ranks i− 2, i− 3, ..., respectively. This was required to show that each tree of a
given rank has a minimum size of Fi+2 (where F is the Fibonacci series) which grows exponential
in i. Consequentially the maximum rank can not be too large, just O(log n), as a tree with higher
rank would require more than n nodes.

Now, if a node can loose an arbitrary number of children without being cut, the above property
can not be guaranteed anymore. In particular, in extreme cases we could end up with a tree with
rank n− 1. Since delete-min has amortized runtime linear in the maximum rank, it will have a
higher amortized running time (i.e., ω(log n)). (4 Points)

Exercise 2: Cuts and Flows (14 Points)

Note that the following three tasks are independent of each other.

(a) Given a flow-network G with nonnegative integer capacities on edges, we call an edge e ∈ E
saturated if its flow value equals its capacity, i.e., if f(e) = ce. Prove or disprove the following
statements.

(1) If an edge e is crossing a minimum s-t-cut of G, any execution of the Ford-Fulkerson algorithm
will saturate e. (2 Points)

(2) Given some maximum flow of G that saturates edge e, then e is crossing at least one minimum
s-t cut of G. (2 Points)



(b) Let the figure below represent a flow-network G with positive integer capacities on edges and
a maximum flow f∗, where we denote the flow value f∗ and the capacity c by f∗/c on the
corresponding edge.
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In the lecture we have seen that given a maximum flow, one can compute a minimum s-t cut
(A∗, V \ A∗), where A∗ is the set of nodes that can be reached from s on a path with positive
residual capacities in the residual graph. Give the cut (A∗, V \A∗) in G. (3 Points)

(c) Given a flow-network G with a source s, sink t, and nonnegative integer capacities on edges.

(1) Consider a minimum s-t cut (S, V \S) of G. Prove that (S, V \S) is not unique if and only if
there exists an edge e crossing the cut (S, V \ S) such that after increasing the capacity of e
by 1, the capacity of the new minimum s-t cut is the same as the capacity of the old minimum
s-t cut. (5 Points)
Remark: A minimum s-t cut (S, V \S) in G is said to be unique if and only if the capacity of
the cut (S, V \ S) is strictly less than the capacity of any other s-t cut (F, V \ F ) in G.

(2) Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut or not.
(2 Points)

Sample Solution

(a) (1) Let (S, V \S) be any min cut and |f∗| be the max-flow value (computed by Ford-Fulkerson).

If we are only considering the edges e in the min s-t cut that are going from S to V \S, then the
statement is true. Indeed, due to the min-cut-max-flow theorem, we have |f∗| = c(S, V \ S).
And if e in this cut wouldn’t be saturated, then we would have that
|f∗| = |f∗out(S)| − |f∗in(S)| ≤ |f∗out(S)| < c(S, V \ S) = |f∗|. Contradiction.

Otherwise, if we want to also consider the cut edges e going from V \ S to S, then the
statement is false. Indeed, |f∗in(S)| must be equal to zero, otherwise if |f∗in(S)| 6= 0, then we
get |f∗| < |f∗out(S)|, and according to what we just proved in the previous paragraph we have
that |f∗out(S)| = c(S, V \ S) = |f∗|, which leads us to a contradiction. Thus all cut edges e
going from V \S to S must have flow 0, thus they are not saturated ( we can say that because
wlog we can also assume the edge capacities are positive integers).

(2) False. The edge with f(e) = ce = 5 is saturated but not part of any min cut. (Note that since
the max flow is 6 and there is only one cut with capacity 6, this is the only min cut in the
given network.)
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(b) A∗ = {s, w, v, u}.

(c) (1) Let C be some min cut of G, prove that C := (S, V \ S) is not unique if and only if the
capacity of the new minimum cut after increasing some edge in C by 1 is the same.
Forward direction: Let C ′ 6= C be another minimum cut in G ( C is not unique), hence, there
must exist e ∈ C \ C ′, otherwise C = C ′, which is a contradiction. Moreover, if this e was
the edge that we increased its capacity by 1, then the capacity of the new minimum cut must
be the same as the old one in particular C ′ is a still a minimum cut in the new graph, since
if there exists another cut in the new graph that has a capacity less than C ′ it will be a
better minimum cut than C in the original graph, which is a contradiction. Thus, the forward
direction is true.
Backward direction: Assume C is unique. Let e ∈ C be the edge that we choose for increasing
its capacity by 1, and hence the capacity of the new minimum cut stays the same. This means
that there must exist a new cut C ′ 6= C such that e ∈ C ∩C and the cut size of C is the same
as C ′. But this implies that if we restore the original capacity of e, then C ′ is a cut in G with
capacity strictly less than that of C, which is a contradiction. Thus, the backward direction
is true.

(2) The algorithm first runs the Ford-Fulkerson algorithm, computes the residual edges at the
same time, and finally stores the max flow value which is equal to the min cut value. Then it
finds the set A∗ by running e.g. a BFS algorithm over positive residual capacity edges starting
from s. We know from the minimum cut-max flow constructive proof that C := (A∗, V \A∗)
is a minimum cut, then for every edge e crossing we do the following: We increase its capacity
value by 1, then run Ford-Fulkerson another time in the new graph and compare the new max
flow with the old capacity value of C, and according to the iff statement in the previous part:
if both values are the same, then we know that C not unique and stop, else we continue by
checking all edges crossing C and if for each edge the capacity of the new min cut was more
than the old one by 1, then we know that C is unique.
This can be done in polynomial in n time (since |C| ≤ m, a variant of Ford-Fulkerson like
Edmonds-Karp can be used to achieve a polynomial in n running time, and the BFS will also
take poly in n).


