
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 10
Due: Friday, 22nd of December 2023, 10:00 am

Exercise 1: Dracula’s path (8 Points)

Count Dracula, eternal in his quest for the arcane, sought a peculiar path through the Midnight
Matrix—a path shrouded in darkness. The challenge was to find the shortest simple path with even
edges in an undirected graph G, from a starting point, marked by the chilling presence of a coffin s, to
a destination enveloped in ancient cryptic powers t. Help Dracula by finding a polynomial algorithm
for this problem.
Hint:Try to construct a new graph. Create a matching in it and try to grab the even shortest path
between s and t as an alternating path in this new graph.

Sample Solution

Create a copy of our graph G′, for every node v in V connect v and its image in G′. In this new graph
we have a trivial perfect matching (for every node the pair is the image of it). Delete s′ and t from the
graph. We can easily prove that there exists an even path between s and t in G if and only if there
is an alternating path between s and t′ in the new graph. If we find the shortest alternating path we
can transform it into the shortest even length path in G.

Exercise 2: Bonus Points Problem (10 Points)

In the mysterious land of Graphylvania, where mathematical enigmas echoed through the haunted val-
leys and enchanted vertices held the key to ancient secrets, a peculiar game unfolded. Two formidable
players, known as the Graph Masters, engaged in a strategic duel over a finite graph denoted as G.
The rules of the game were as intricate as the web of shadows that cloaked Graphylvania. The Graph
Masters, taking turns with a solemn rhythm, selected previously untouched vertices, ensuring that
each chosen point was adjacent to the one preceding it. The starting vertex is choosen by the Graph
Master that play’s second. The eerie echoes of their moves resonated through the cryptic edges of G.
As the game progressed, a cryptic truth emerged—the last player capable of choosing a vertex would
be crowned the ultimate Graph Master. The stakes were high, and the winner would gain not only
mathematical glory but also access to the ancient powers hidden within the graph. Rumors whispered
through the haunted halls of Graphylvania that a secret lay dormant within the very essence of the
graph G. A spectral mathematician known for his insatiable thirst for mathematical truth, Count
Graphula, an eternal observer of the mathematical realm, sought to uncover the secrets of the game.
Help Count Graphula in finding an if and only if theorem where for every graph you can tell who has
the winning strategy.

Sample Solution

Let us call denote the two Graph Masters as A and B and suppose that A is the first player. We claim
that the following is true.



Theorem 1. A has a winning strategy if and only if the graph G has a perfect matching. Otherwise,
B has a winning strategy.

Proof. If G has a perfect matching then A obviously has a winning strategy, because no matter where
B puts the starting vertex A can always choose an edge to go along which is in the matching.
Let us suppose that G does not have a perfect matching. Let us take a matching M that has maximum
size in G. B should choose a vertex v that is not covered by M . After this B can always go through
matching edge and thus win. Why is this true? Because if not, and A could go to a non-matched
vertex there would be an alternating path in graph thus M not a maximum matching.

Exercise 3: Probabilistic Algorithms (4+8 Points)

(a) In the dark, brooding realm of Transylvania, where legends of the undead and supernatural
mysteries whispered through the centuries, a mathematical puzzle unfurled amidst the ancient
castle of the legendary vampire, Count Dracula.

Within the shadowy corridors of Dracula’s castle, a collection ofN mystical points manifested—each
point in the plane, a manifestation of arcane energies that resonated with the supernatural forces
permeating the very stones of the castle. Dracula, eternal in his quest for knowledge, sought to
unravel the enigma concealed within these points.

The challenge presented itself in the form of an ancient riddle—a line must be drawn through
these mystical points, ensuring that it traversed at least N

4 of the total points. It was known that
such a line exists. As the night fell and the moon cast an eerie glow over the castle, Dracula,
intrigued by the mathematical puzzle, summoned the denizens of the night to aid him. You are
one of these creatures. Create an algorithm which with high probability (at least 0.999) finds this
mystical line.

Sample Solution

Basic Idea: Select two points at random from the N point and check if the unique line that goes
through them, contains N

4 points from the N points. The probability that such an attempt succeed

is Pr(succeed) =

(N
4

2

)
(
N

2

) =

N

4
(
N

4
− 1)

N(N − 1)
= 1

4

(
N

4
− 1)

(N − 1)
. We want to have success probability at least

0.999. If we do t of these independent tries we have a success probability of (1− Pr(succeed))t.
We can choose t such that the (1− Pr(succeed))t value will be smaller than 0.0001.

(b) In class, we looked at the following simple contention resolution problem. There are n processes
that need to access a shared resource. Time is divided into time slots and in each time slot, a
process i can access the resource if and only if i is the only process trying to access the resource.
We have shown that if each process independently tries to access the resource with probability
1/n in each time slot, in time O(n log n), all processes can access the resource at least once with
high probability. The goal of the exercise is to improve the algorithm and to get an O(n) time
algorithm under the following assumptions.

• As in the lecture, all the processes know n (the number of processes). In the algorithm of
the lecture, this is needed because the probability 1/n for accessing the resource depends on
n. As in the lecture, we also assume that all processes start together in the first time slot.

• If a process tries to access the resource in a time slot, the process afterwards knows whether
the access was successful or not. Also, we assume that a process only needs to succeed once,
i.e., once a process has been successful, it stops trying to access the resource.



The goal of this exercise is to give and analyze a randomized algorithm which guarantees that for
some given constant c > 0 with probability at least 1−1/nc, during the first O(n) time slots, each
of the n processes can access the resource at least once.

(a) (2 points) Let us first assume that in each time slot at most n/ lnn processes (among n
processes) need to access the resource. Adapt the algorithm of the lecture such that all
processes succeed in accessing the channel in O(n) rounds with probability at least 1−1/nc+1.

(b) (1 point) Let us now assume that we are given an algorithm which guarantees that after T (n)
time slots, the number of processes which have not yet succeeded is at most n/ lnn with
probability at least 1 − 1/nc+1. What is the probability that all n processes succeed when
combining this algorithm with the adapted algorithm of the lecture from question (a). Define
the appropriate probability events to analyze this probability.

(c) (5 points) It remains to give an algorithm to which manages to get rid of all except n/ lnn
of the processes with probability at least 1 − 1/nc+1. Show that this can be achieved by an
algorithm which runs in multiple stages. You can use the following hint.

Hint: You can make use of the following fact. Consider a time interval consisting of at least
e2k time slots. During the time interval, there are at most k processes trying to access the
resource and in each time slot, each of the at most k processes tries to access the resource with
probability 1/k. Then, with probability at least 1− e−k, at the end of the interval, at most k/2
of the processes have not succeeded to access the resource.

Sample Solution

(a) Suppose in each time slot k ≤ n/ lnn processes want to access the resource. We show that if
each of them broadcasts with probability lnn/n, after O(n) steps, all of them have succeeded
with probability at least 1 − 1/nc+1. By choosing p = lnn/n and using the analysis of the
lecture, here we show that all the n processes can succeed with high probability.

In the similar way, we define the following events.

Ai,t : process i tries to access the resource in time slot t.

Si,t : process i is successful in time slot t.

Fi,t : process i does not succeed in time slots 1, 2, . . . , t.

By our assumption, Pr(Ai,t) = p = lnn/n. Therefore,

Pr(Si,t) = p(1− p)k−1 [since in each time slot k processes try to access the resource]

≥ lnn

n

(
1− lnn

n

) n
lnn

−1 [
since k ≤ n

lnn

]
>

lnn

en

Then Pr(Fi,t) =
(
1− Pr(Si,t)

)t
, since Si,t are independent for different t. We get

Pr(Fi,t) <

(
1− lnn

en

)t

< e−
t lnn
en

Hence, probability of no success by time t is less than e−
t lnn
en for a particular process. Setting

t = ⌈en · (c + 2)⌉ gives Pr(Fi,t) < e−(c+2) lnn = 1
nc+2 , which is the failure probability of a

particular process i by time t. Therefore the probability of success of the process i by time
t = ⌈en · (c+2)⌉ is at least

(
1− 1

nc+2

)
. Then taking the union bound on the failure probability

over all the n processes (as in the lecture), we show that all processes succeed in time t = O(n)
with probability at least 1− 1

nc+1 . For this, we define Ft : some process has not succeeded by



time t. Then Ft = ∪n
i=1Fi,t. Therefore, the probability that not all processes have succeeded

by time t is:

Pr(Ft) = Pr (∪n
i=1Fi,t)

union bound

≤
n∑

i=1

Pr (Fi,t) <
n

nc+2
=

1

nc+1
.

Hence, all processes succeed with probability at least 1− 1
nc+1 in time O(n).

(b) Note that we first run the algorithm which guarantees the number of unsuccessful processes is
at most n/ lnn. Let us call this algorithm as A1. Then we run the above algorithm in question
(a), say the algorithm is A2. Because after the first algorithm all the successful processes stop
trying to access the resource and hence there are at most n/ lnn processes trying to access it.
So the algorithm in question (a) guarantees that the remaining processes (which is at most
n/ lnn) are successful with high probability.

Define two events:
E1 : algorithm A1 is successful in T (n) time
E2 : algorithm A2 is successful in O(n) time
From the given assumption, Pr(Ē1) ≤ 1

nc+1 and Pr(Ē2) ≤ 1
nc+1 .

Hence, the probability that algorithm A and algorithm B together give some process has not
succeed after time T (n) +O(n) is:

Pr(Ē1 ∪ Ē2)
union bound

≤ Pr(Ē1) + Pr(Ē2) ≤
2

nc+1
<

1

nc

That is with probability at least
(
1− 1

nc

)
all n processes succeed after T (n)+O(n) time slots.

(c) The goal is to devise a randomized algorithm which under the above assumptions guaran-
tees that with probability at least 1− 1/nc+1, all except at most n/ lnn of the processes can
successfully access the shared resource once by O(n) time slots. To do so we split the O(n)
available time slots into phases, which shorten in length and participating processes increase
their access probabilities.

Phase: The first phase starts with all n processes and ends after e2n time slots. Each subse-
quent phase, up to some point, lasts only half as long as the previous phase. More precisely,
the jth (j ≥ 2) phase starts after

∑j
i=2

e2n
2i−2 time slots and lasts for e2n

2j−1 time slots.

It follows from the ‘hint’ that at the end of the first phase, at least n/2 processes successfully
access the shared resource with probability at least 1−e−n. With respect to the given assump-
tions1, therefore, at most n/2 processes remain active (i.e., unsuccessful) and try to access
the shared resource (after the first phase). We assume that each phase halves the number
of remaining processes and under that assumption we repeat our ‘phases scheme’ until the
number of remaining processes is less than cn/ lnn where c is a constant yet to be determined.
We thus define ℓ := log(lnn) and for simplicity we assume this is a natural number (otherwise
take the ceiling of it).

Assume for now that after every phase at most half of the processes are left. Thus the running
time of the algorithm is:

∑
k

e2k =
ℓ∑

i=0

e2n

2i
= e2n

ℓ∑
i=0

1

2i
∀ℓ
< 2e2n = O(n).

1Once a process has been successful, it stops trying to access the resource further.



So far we only assumed that after each phase the number of remaining processes is halved; let
us prove this. Define phase j is successful if and only if at most n/2j processes remain active
by the end of phase j.

Event ȷi: Phase i is unsuccessful and it is the first phase for which this is the case.

Due to the hint, Pr(ȷi) ≤ e−k = e
−n

2i where i ∈ {0, 1, · · · , ℓ}. Note that applying the hint
here is correct, since if i is the first phase in which something can fail, it means that phase i
started with a proper amount of processes.

Event ȷ: The algorithm has failed, in other words some phase i ≤ ℓ has not been successful.

Pr(ȷ) = Pr(∪ℓ
i=0ȷi)

union bound

≤
ℓ∑

i=0

Pr(ȷi)

hint

≤
ℓ∑

i=0

e−
n

2i

≤ ℓe
− n

2ℓ

= log(lnn)e−
n

lnn

=
log(lnn)

e
n

lnn

< 1/nc+1 [for any constant c > 0]

The last inequality is true because take the logarithm on both sides and subtract the right
side from the left. We end up with ln log lnn− n

lnn + (c+1) lnn < 0 and this is true for large
enough n because n

lnn is the dominating value in the expression. Consequently, for c > 0 and
large enough n (n ≥ 2), the algorithm succeeds with probability at least 1− 1/nc+1. That is
the algorithm which runs in multiple phases can get rid of all except n/ lnn of the processes
with probability at least 1− 1/nc+1.

Remark 1: You may think that why we can not use the above algorithm untill all n processes
succeed. The reason behind this is that with k = o(c lnn) the probability that at most k/2
(halve) processes remain is less than 1−e−o(c lnn) = 1−ω(1/n), i.e., not with high probability.

Remark 2: To complete the original goal of the exercise, that is to present a randomized
algorithm which guarantees that for some given constant c > 0 with probability at least
1 − 1/nc, during the first O(n) time slots, each of the n processes can access the resource at
least once, we combine the above algorithms as follows:

After the above algorithm in question (c) when less than n/ lnn processes remained unsuccess-
ful or active, we use the simple algorithm of question (a). The complete randomized algorithm
is given in Algorithm 1 and is executed by every process. Note that the Algorithm 1 consists
of two parts: the first part (where k ≥ n/ lnn) corresponding to the algorithm in question (c)
and the second part (where less than n/ lnn processes remained unsuccessful) corresponding
to the algorithm in question (a). Therefore, the combined algorithm guarantees that for some
given constant c > 0 with probability at least 1− 1/nc, each of the n processes can access the
resource at least once, in linear O(n) time.



Figure 1: After consolidation


