Algorithm Theory Sample Solution Exercise Sheet 12

Due: Friday, 26th of January 2024, 10:00 am

Exercise 1: Modified Contraction

(a) Let's modify the contraction algorithm from the lecture in the following way: Instead of contracting a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge them. That is, as long as there are more than two nodes remaining, we choose two nodes $u \neq v$ uniformly at random and replace them by a new node w. For all edges $\{u, x\}$ and $\{v, x\}$ we add an edge $\{w, x\}$ and remove self-loops created at w.

1. Give an example graph of size at least n where the above algorithm does not work well, that is, where the probability of finding a minimum cut is exponentially small in n (show that in the second part).
(2 Points)
2. Show that for your example the modified contraction algorithm has probability of finding a minimum cut at most a^{n} for some constant $a<1$.
(4 Points)
(b) The edge contraction algorithm has a success probability $\geq 1 /\binom{n}{2}$. We used properties of this algorithm to show that there are at most $\binom{n}{2}$ minimum cuts in any graph. The improved (recursive) min-cut algorithm has a success probability $\geq 1 / \log n$. Why can't we use the same argumentation to show that there are at most $\log n$ minimum cuts in any graph (which clearly isn't true as we have seen that cycles have $\binom{n}{2}$ minimum cuts).
(4 Points)

Sample Solution

(a) This algorithm is not efficient. Let (A, B) be a minimum cut. For the edge contraction algorithm we know that it outputs (A, B) if and only if it never contracts an edge crossing (A, B) (chapter 7 , part V , slide 8). If the there are k crossing edges, we know that there are $\Omega(k \cdot n)$ edges in the graph and hence the probability to choose a crossing edge is $O(1 / n)$ (in the first contraction step). In contrast, for the "node contraction" algorithm, it holds that it outputs (A, B) if it never contracts a "crossing pair", i.e., a pair of nodes $\{a, b\}$ with $a \in A, b \in B$, regardless whether there is an edge between a and b. The total number of node pairs is $\binom{n}{2}=\Omega\left(n^{2}\right)$, but the number of crossing pairs can be $\Omega\left(n^{2}\right)$ as well, leading to a constant probability that a crossing pair is chosen.

To formalize this argument, consider the following graph: Let n be even. There are two cliques ($=$ graph with an edge between each pair of nodes) of size $n / 2$ and a single edge between these cliques, i.e., an edge $\{u, v\}$ such that u is in the one clique and v in the other, and no more edges between the cliques exist.

So there is a unique minimum cut and we show that the probability that the node contraction algorithm chooses this cut is exponentially small. We only consider the first $n / 5$ rounds. In these rounds, there are at least $4 n / 5$ nodes in the graph, i.e., there are $\binom{4 n / 5}{2}$ pair of nodes. In order for the minimum cut to survive, the two chosen nodes must be within the same clique. Each clique
has size at most $\binom{n / 2}{2}$ nodes, i.e., there are at most $2\binom{n / 2}{2}$ pairs for which the minimum cut would survive. This yields a probability of at most

$$
\frac{2\binom{n / 2}{2}}{\binom{n n / 5}{2}}=\frac{2 \frac{n}{2}\left(\frac{n}{2}-1\right)}{\frac{4 n}{5}\left(\frac{4 n}{5}-1\right)}=\frac{5}{4} \frac{\left(\frac{n}{2}-1\right)}{\left(\frac{4 n}{5}-1\right)}=\frac{\frac{5 n}{2}-5}{\frac{16 n}{5}-4} \stackrel{(* *}{<} \frac{\frac{5 n}{2}}{\frac{15 n}{5}}=\frac{5}{6} .
$$

$(*):$ For $n>20$ we have $\frac{n}{5}>4$ and hence $\frac{16 n}{5}-4>\frac{15 n}{5}$.
It follows that the probability that the minimum cut survives the first $n / 5$ rounds is less than $\left(\frac{5}{6}\right)^{n / 5}=a^{n}$ with $a=\left(\frac{5}{6}\right)^{1 / 5}<1$, i.e., exponentially small.
(b) In the edge contraction algorithm, we showed that for any minimum cut (A, B), the probability that the algorithm returns (A, B) is $\geq 1 /\binom{n}{2}$. As for two minimum cuts $(A, B) \neq\left(A^{\prime}, B^{\prime}\right)$, the events "the algorithm returns (A, B) " and "the algorithm returns $\left(A^{\prime}, B^{\prime}\right)$ " are disjoint, the probability that the algorithm returns some minimum cut is $\geq \frac{\# \text { mincuts }}{\binom{n}{2}}$ and hence $\#$ mincuts $\leq\binom{ n}{2}$.
In the recursive algorithm, we considered a set S of cuts which are returned by different executions of the edge contraction algorithm and showed that the probability that a specific minimum cut is in S is $\geq 1 / \log n$. As for two minimum cuts $(A, B) \neq\left(A^{\prime}, B^{\prime}\right)$, the events " (A, B) is in $S^{\prime \prime}$ and " $\left(A^{\prime}, B^{\prime}\right)$ is in $S^{\text {" }}$ are not necessarily disjoint, we can not draw any conclusion from the sucess probability to the number of minimum cuts.

Exercise 2: Dominating Set in Regular Graphs

Let $G=(V, E)$ be an undirected graph. A set $D \subseteq V$ is called a dominating set if each node in V is either contained in D or adjacent to a node in D.
We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors).

```
Algorithm 1 domset \((G)\)
    \(D=\emptyset\)
    Each node joins \(D\) independently with probability \(p:=\min \left\{1, \frac{c \cdot \ln n}{d+1}\right\}\) for some constant \(c \geq 1\)
    Each node that is neither in \(D\) nor has a neighbor in \(D\) joins \(D\)
    return \(D\)
```

For simplicity, in all tasks you may assume that $\frac{c \cdot \ln n}{d+1} \leq 1$, i.e., that $p=\frac{c \cdot \ln n}{d+1}$.
(a) Show that the expected size of D (after the execution of domset) is at most $\frac{c n \ln n}{d+1}+1$. (3 Points) Hint: Use the inequality $(1-x) \leq e^{-x}$.
(b) Show that after line 2 of domset, D has size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{1}{n}$. (2 Points) Hint: You might want to use Chernoff's Bound: If X_{1}, \ldots, X_{n} is a sequence of independent 0-1 random variables, $X=\sum X_{i}$ and $\mu=E[X]$, then for any $\delta>0$ we have

$$
\operatorname{Pr}(X \geq(1+\delta) \mu) \leq e^{-\frac{\min \left\{\delta, \delta^{2}\right\}}{3} \mu}
$$

(c) Show that for $c \geq 2$, with probability at least $1-\frac{1}{n}$, no node joins D in line 3 of domset. (3 Points)
(d) Conclude that for $c \geq 2$, domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ with probability at least $1-\frac{2}{n}$.

Sample Solution

(a) For every $v \in V$

$$
\begin{aligned}
\operatorname{Pr}(v \in D) & =\operatorname{Pr}(v \text { joins } D \text { in line } 2)+\operatorname{Pr}(v \text { joins } D \text { in line } 3) \\
& =\frac{c \ln n}{d+1}+\left(1-\frac{c \ln n}{d+1}\right)^{d+1} \leq \frac{\ln n}{d+1}+e^{-c \ln n} \\
& =\frac{c \ln n}{d+1}+\frac{1}{n^{c}}
\end{aligned}
$$

We obtain

$$
E[|D|] \leq n \cdot\left(\frac{c \ln n}{d+1}+\frac{1}{n^{c}}\right)=\frac{c \cdot n \ln n}{d+1}+\frac{1}{n^{c-1}} \leq \frac{c \cdot n \ln n}{d+1}+1
$$

(b) For each node v let X_{v} be the random variable with $X_{v}=1$ if v joins D in line 2 and $X_{v}=0$ else and let $X=\sum X_{v}$. We have $\operatorname{Pr}\left(X_{v}=1\right)=\frac{c \cdot \ln n}{d+1}$ and hence $\mu=E[X]=\frac{c n \cdot \ln n}{d+1}$.
For $\delta=3$ we obtain

$$
\operatorname{Pr}(X \geq(1+3) \mu) \leq e^{-\mu}=e^{-\frac{c n \ln n}{d+1}} \leq e^{-c \ln n}=\frac{1}{n^{c}} \leq \frac{1}{n}
$$

and So with probability at least $1-\frac{1}{n}$ we have $|D| \leq 4 \mu=O\left(\frac{n \ln n}{d}\right)$.
(c) For every $v \in V, \operatorname{Pr}(v \in D$ in line 3$)=(1-p)(1-p)^{d} \leq e^{-c \ln n}=\frac{1}{n^{c}}$.
and $\operatorname{Pr}\left(\cup_{v \in V^{v}} \in D\right.$ in line 3$) \leq \sum_{v \in V} \operatorname{Pr}(v \in D$ in line 3$) \leq \frac{n}{n^{c}} \leq \frac{1}{n}$, for $c \geq 2$, thus with probability at least $1-\frac{1}{n}$, no node joins D in line 3 .
(d) In general, let A, B be two events such that $A \subseteq B$, then $\operatorname{Pr}(A) \leq \operatorname{Pr}(B)$.

Hence, $\operatorname{Pr}\left(\right.$ domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ at the end of its execution $) \geq$ $\operatorname{Pr}\left(\right.$ domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ at the end of line 2$) \geq\left(1-\frac{1}{n}\right)\left(1-\frac{1}{n}\right) \geq 1-\frac{2}{n}$.

