

Algorithm Theory Sample Solution Exercise Sheet 13

Due: Friday, 2nd of February 2024, 10:00 am

Remark: For the maximization problems, we are considering the approximation ratio $\alpha := \max_{\text{input instance } I} \frac{OPT(I)}{ALG(I)}$

Exercise 1: Miscellaneous Approximations

(8 Points)

Let G = (V, E) be an undirected connected graph.

- (a) The minimum dominating set problem asks to find a dominating set $D \subseteq V$ of minimum size. Show that for $c \geq 2$, the domset algorithm from the previous sheet (c.f. sheet 12, exercise 2) computes an $\mathcal{O}(\ln n)$ -approximation of a minimum dominating set with probability at least $1 - \frac{2}{n}$. (3 Points)
- (b) 1. An *independent set* is a set $I \subseteq V$ such that no two nodes in I share an edge in E. The maximum independent set problem asks to find an independent set of maximum size. Recall that the minimum vertex cover problem asks to find a vertex cover of minimum size. Now, show that both optimization problems are equivalent i.e. finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set . (1 Point)
 - 2. Show that the two problems are not equivalent in an approximation-preserving way, i.e it is not true that for all positive integer α , finding an α -approximate minimum vertex cover is equivalent to finding a α -approximate maximum independent set.

Hint: Give a counterexample by finding a family of graphs where one can easily obtain a 2-approximate minimum vertex cover, but this will equivalently find a very bad approximate maximum independent set. (4 Points)

Sample Solution

- (a) Notice that each node in a minimum dominating set covers at most d + 1 nodes, one can then deduce that OPT $(d + 1) \ge n$, where OPT is the size of a minimum dominating set, and that is enough to show what the question asks for.
- (b) 1. One can prove that the statement is true by taking the complement of the result, i.e. the set of vertices is a vertex cover if and only if its complement is an independent set.
 - 2. Consider a complete bipartite graph $K_{n,n}$. One can show that on one hand all the nodes make up a 2-approximation to the minimum vertex cover problem, but the complement graph which is the empty graph of size 0 is far away from being a 2-approx of the maximum independent set problem (one can show that a maximum independet set is of size n).

Exercise 2: A Set Cover Variant

(12 Points)

We consider the following variant of the set cover problem discussed in the lecture. We are given a set of elements X and a collection $S \subseteq 2^X$ of subsets of X such that $\bigcup_{S \in S} S = X$. In addition, we are given an integer parameter $k \geq 2$.

Instead of finding a collection $C \subseteq S$ of the sets which covers all elements, the goal is to find a set of **at most** k sets $S_1, \ldots, S_k \in S$ such that the number of covered elements $|S_1 \cup \cdots \cup S_k|$ is maximized. We consider the greedy set cover algorithm from the lecture, but we stop the algorithm after adding k sets.

- (a) Show that for k = 2, the described greedy algorithm has approximation ratio at most 4/3. (5 Points)
- (b) Let us now consider a general parameter $k \ge 2$. Show that if an optimal choice of k sets S_1, \ldots, S_k covers ℓ elements, after adding t sets, the greedy algorithm covers at least $\frac{\ell}{k} \cdot \sum_{i=1}^{t} \left(1 \frac{1}{k}\right)^{i-1}$ elements. (5 Points)
- (c) Prove that the approximation ratio of the greedy algorithm is at most $\frac{e}{e-1}$. You can use that $(1-1/k)^k < e^{-1}$. (2 Points)

Sample Solution

- (a) Let S denote the optimal solution which covers x distinct elements. For the case k = 2, the optimal solution consists of one or two non empty sets in S. Let us consider the two cases as follows:
 - Assume that the optimal solution consists of only one non empty set, that is, $S = \{S_1\}$. Then S_1 is a set in S with cardinality x, and all other sets in S are subset of S_1 . Since the greedy approach picks S_1 as the set with maximum cardinality in S, the greedy solution is optimal.
 - Assume the optimal solution consists of more than one set, that is $S = \{S_1, S_2\}$. Moreover, let $F = \{F_1, F_2\}$ denote the greedy solution. Since $|S_1 \cup S_2| = x$, then either $|S_1| \ge x/2$ or $|S_2| \ge x/2$. Hence, we can claim that the set with maximum cardinality in S has cardinality $\ge x/2$, which is picked by the greedy algorithm for the first choice (i.e., $|F_1| \ge x/2$).

After the first choice of the greedy solution, $\{S_1 \cup S_2\} \setminus F_1$ is the set of uncovered elements in the optimal solution. These elements are covered by S_1 and S_2 . Hence, either S_1 or S_2 covers at least half of these elements. Therefore, we can claim that the set in S which covers the maximum number of uncovered elements covers at least $|\{S_1 \cup S_2\} \setminus F_1|/2$ elements.

Therefore the greedy solution covers at least $|F_1| + \frac{x-|F_1|}{2} = \frac{x+|F_1|}{2}$ elements (true since $|\{S_1 \cup S_2\} \setminus F_1| \ge |\{S_1 \cup S_2\}| - |F_1|$).

Now, considering $|F_1| \ge x/2$, the greedy solution covers at least $\frac{x+x/2}{2} = \frac{3x}{4}$ elements, which proves the claim on greedy solution's approximation factor.

(b) The core part of the proof is the following claim.

Claim 1. Considering the optimal solution $S = \{S_1, S_2, \ldots, S_k\}$, for any $A \subseteq \bigcup_{i=1}^k S_i$, there exists at least one set U in S such that $|U \cap A| \ge \frac{|A|}{k}$. That is, U covers at least $\frac{|A|}{k}$ elements in A.

Proof. Let us assume that there does not exist such a set in S. Then we can say that all of the sets in S covers less than $\frac{|A|}{k}$ elements in A. Since there are at most k sets in S, the union of all the sets in S cannot cover all the elements in A. This contradicts the fact that the the sets in S cover all elements in $X \supseteq A$.

Let $E = \{e_1, e_2, \ldots, e_\ell\}$ be the set of all elements that are covered by the optimal solution. Moreover, let y_t denote the number of elements that the greedy solution covers after choosing t sets. Hence, the number of uncovered elements by greedy approach in E before it chooses the t^{th} set is $\ell - y_{t-1}$. Based on Claim 1, for the set of uncovered elements in E there exist at least one set in the optimal solution that covers at least $\frac{\ell - y_{t-1}}{k}$ new elements in the optimal solution. Since in step t the greedy algorithm chooses a set in S which covers the maximum number of uncovered elements, $y_t - y_{t-1} \ge \frac{\ell - y_{t-1}}{k}$. Therefore, we have the following recurrence relation for the number of elements that the greedy solution covers.

$$y_t \ge \frac{\ell}{k} + y_{t-1} \left(1 - \frac{1}{k} \right)$$

Considering the fact that $y_0 = 0$ (before greedy chooses any set, the number of covered elements is zero), by repeated replacement, the above recurrence relation leads to the claim stated in the question.

NB: Alternatively one can prove the statement by arguing by induction on $t \ge 1$.

(c) Considering the recurrence relation achieved in question (b), the number of elements that are covered by greedy solution with k chosen sets is at least

$$\frac{\ell}{k} \cdot \sum_{i=1}^{k} \left(1 - \frac{1}{k} \right)^{i-1} = \frac{\ell}{k} \cdot \frac{1 - \left(1 - \frac{1}{k} \right)^{k}}{1 - \left(1 - \frac{1}{k} \right)}$$
$$\stackrel{**}{\geq} \frac{\ell}{k} \cdot \frac{1 - \frac{1}{e}}{1 - \left(1 - \frac{1}{k} \right)}$$
$$= \ell \cdot \frac{e - 1}{e}.$$

 $** \left(1 - \frac{1}{k}\right)^k < \frac{1}{e}$

As a result on any input instance, we can calculate the approximation factor as follows.

$$\frac{Optimal}{Greedy} \leq \frac{\ell}{\ell \cdot \frac{e-1}{e}} = \frac{e}{e-1}$$