
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 15
Due: Friday, 16th of February 2024, 10:00 am

Exercise 1: Maximum Sparse Subgraph (8 Bonus Points)

Let G = (V,E) be a simple graph, we define a 2-sparse edge set F ⊆ E to be the subset of edges such
that the subgraph H = (V, F) induced by the edges has maximum degree at most 2. We call F a
maximum 2-sparse edge set if there is no 2-sparse edge set F ′ of larger size.
Assume that we are given the edges in online fashion. Observe the greedy algorithm that always adds
the next incoming edge e = {u, v} to F as long as this choice does not increase the degree of u or v to
more than 2. Show that this algorithm has competitive ratio 2. Further, show that this is tight, i.e.,
there is a graph such that if the edges come in some specific order, the algorithm has exactly half as
many edges as to optimal solution.

Sample Solution

Let FALG be the set of edges constructed by our online algorithm and let FOPT be the set of edges
in the optimal solution. We show that there is a mapping function f : FOPT → FALG with the
property that for all e ∈ FALG we have |f−1(e)| ≤ 2. Note that this property directly implies that
|FOPT | ≤ 2 · |FALG|. The construct the mapping as follows:
First we map each edge e ∈ FOPT ∩ FALG to itself i.e., f(e) = e. Now consider the remaining edges
in FOPT \ FALG. Clearly, for each such edge e = {u, v} we have that u is incident to 2 edges from
FALG or v is (or both), cause otherwise ALG would have added e to FALG. W.l.o.g., let u be an
endpoint of e that has degree 2 in the subgraph (V, FALG) and let us call these edges e1 and e2. We
set f(e) = e1 if we do not already map another edge e′ ∈ FOPT that also has u as endpoint to e1, else
we set f(e) = e2. Note that since at most 2 edges from FOPT have u as endpoint, it is always possible
to map e either to e1 or to e2. Thus, by that construction we can map all edges from FOPT to some
edge in FALG. It remains to show that for all e′ ∈ FALG we have |f−1(e′)| ≤ 2. By our construction
it is clear that for each endpoint of e′ at most one edge from FOPT can be mapped to e′. Hence, the
statement is true because each edge has at most 2 endpoints.
To see why this is a tight result, take a look at the following graph. An optimal solution will pick the
blue edges, while our greedy algorithm may decide on the set of red edges if they come in a ”bad”
order.

u v

w

u1

u2

v1

v2w1 w2

Exercise 2: Parallel Parentheses (12 Bonus Points)

You are given a string S consisting of opening and closing parentheses. The expression S is supposed
to be a string with balanced parentheses if each opening parenthesis has a corresponding closing
one and the pairs of parentheses are properly nested. For example, consider the expressions (()()) as
a correctly balanced string of parentheses and ())(as an incorrect one.

a) First, provide a (sequential) linear-time algorithm to determine whether S is balanced. (4 Points)

b) Now devise a parallel algorithm to check if the string S is balanced. Like in the lecture assume
that we are given p processors. What is the asymptotic runtime Tp? (8 Points)

Sample Solution

a) We use a stack, that is empty in the beginning and process the string S from left to right. Whenever
there is an opening parenthesis, we push it on that stack as a signal that a closing symbol needs
to appear later. If we meet a closing parenthesis pop the latest symbol from the stack. As long as
it is possible to pop the stack to match every closing symbol, the parentheses remain balanced. If
at any time there is no opening symbol on the stack to match a closing symbol, the string is not
balanced properly. At the end of the string, when all symbols have been processed successfully,
the stack is empty if and only if the string is balanced. Since a single pass over the string S is
sufficient, the runtime is as required.

Note that there are easier algorithms for that problem, but this version can easily be generalized
if there are different kinds of brackets like (,), {, } and [,].

b) We are given p processors and a string S of size |S| = n. We substitute the opening parenthesis
with 1 and the closing parenthesis with −1 (this can be done in time O(n/p) by splitting the string
into p equally sized substrings). Afterwards, we can compute the prefix sum from the lecture on
this substituted string (where addition is the operation of the prefix-sum). Our original string S
is properly balanced if each prefix-sum value

• is greater or equal to zero and

• the last prefix sum equals zero.

By the first condition we make sure that there are always more or equally many opening parentheses
and by the second condition we make sure that in S these numbers are equal. These conditions can
easily be checked in time O(n/p). As we know from the lecture that prefix sums can be computed
in time O(n/p+log n) it takes time Tp = O(n/p+log n) to check if S is balanced using p processors.

