
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 3
Due: Friday, 8th of November 2024, 10:00 am

Exercise 1: Covering Unit Intervals (5 Points)

We are given a set X of rational numbers. We want to find a minimum sized set S of unit intervals
(i.e., intervals of the form [a, a + 1]), such that each element in X is covered by at least one of
these intervals from S. For example, let X = {1, 2.5, 3.1, 5}, then the set of unit intervals S1 :=
{[0, 1], [2, 3], [3, 4], [4.5, 5.5]} covers all the elements in X, however, S1 is not minimal. The minimum
sized set contains only 3 intervals, for example S2 := {[0, 1], [2.3, 3.3], [4.5, 5.5]}.
Now, consider the following greedy algorithm A:
In the first step A determines some a ∈ Q such that [a, a+ 1] contains the maximum possible number
of elements in X. This interval [a, a + 1] is added to S and the covered elements are deleted from X.
A then recurs on the remaining elements and stops when X is empty.

a) Determine why A does not return an optimal solution. (2 Points)

b) Provide an efficient greedy algorithm to solve the problem. Argue why your algorithm is optimal.
Use an exchange argument for your reasoning! (3 Points)

Sample Solution

a) Let X = {1, 1.8, 2.0, 2.2, 2.7, 3.2}. Clearly the optimal solution only needs 2 intervals e.g. [1, 2] and
[2.2, 3.2]. The greedy approach A would however pick an interval that covers 1.8, 2.0, 2.2 and 2.7 in
the first step (as this is the maximum number of elements that can be covered), thus we need two
more intervals to cover the remaining 2 values. Hence, it includes more intervals than the optimal
solution.

b) The optimal algorithm works as follows:
First, we sort X and take the smallest element, say x1, to create the first interval [x1, x1 +1]. Now,
we delete the elements from X that are covered by this interval and proceed until X is empty.
To show the optimallity, let x1, x2, ..., xn be (the sorted) interval starting points selected by this
greedy algorithm and let y1, ..., ym be the ones that the optimal solution picks. Let i be the first
index where xi 6= yi. Note that since xi, by the design of the greedy algorithm, is also part of
X we have that yi < xi, cause otherwise the optimal solution would not cover all elements in X.
Because there are no elements smaller than xi that are uncovered, the optimal solution can just
replace [yi, yi + 1] by [xi, xi + 1] and still covers the same elements.
One can apply this exchange argument a finite number of times to step-wise change the optimal so-
lution to our greedy solution without increasing the number intervals. Hence, this greedy approach
returns an optimal solution.

Exercise 2: Graph coloring (7 Points)

We say that a undirected graph G = (V,E) has degeneracy k if every subgraph of G (and thus also G
itself) has a vertex of degree at most k.

a) Show that given a graph G with degeneracy k can be colored with at most k + 1 colors, i.e., there
is a labeling of the nodes of G with ’colors’ in {1, ..., k+ 1} such that no neighbors are labeled with
the same color. (3 Points)

b) There is the class of so-called planar graphs, for which it holds that |E| ≤ 3|V | − 6. Show that
every planar graph can be colored with at most 6 colors.1 (4 Points)
Hint: Try to bound the degeneracy of planar graphs.

Sample Solution

a) First, we calculate an ordering v1, v2, ..., vn of the nodes, such that for all 1 ≤ i ≤ n, node vi has
a degree of at most d in the induced subgraph G[vi, vi+1, ..., vn]. By the definition of degeneracy
we know that G has one node with that property. We take this node as v1 and delete it from the
graph. The remaining graph G[v2, ..., vn] is a subgraph of G and hence also has a node of degree
at most d. This is node v2. We repeat this until we have constructed the complete order.
We will now color the nodes in reverse direction, i.e., we color in the order vn, vn−1, ..., v1. Whenever
we color some node vi, we know that vi has degree at most d in this subgraph, hence even if all d
neighbors have a different color, vi will take the leftover color from {1, ..., d + 1}. This proves the
statement.

b) First we show that in every planer graph there exists a node with degree ≤ 5. For that, assume
this is false, i.e., all nodes have degree ≥ 6. Then, we can bound the number of edges as follows:
|E| = 1

2

∑
v∈V deg(v) ≥ 1

2

∑
v∈V 6 = 3|V |. This is a contradiction to the property of planer graphs

that |E| ≤ 3|V | − 6. Hence, at least one node must have degree ≤ 5.

Note that since every subgraph of a planar graph is also a planer graph, each subgraph also has at
least one node of degree at most 5, and hence planer graphs have degeneracy of at most 5. By the
result of a), these graphs are 6-colorable.

Exercise 3: Greedy TSP (8 Points)

Consider a symmetrical TSP instance. We have seen in the lecture that the (greedy) nearest neighbor
approach can be arbitrarily bad. In this task we want to show that this is not true if we have some
additional constrains. For that assume that all edges have weight either a or b with 0 < a < b.

a) Prove that the nearest neighbor algorithm from the lecture is still not optimal. (1 Point)

b) Prove that the nearest neighbor algorithm from the lecture produces a TSP tour with a cost of
at most a a+b

2a factor from the optimal tour. In other words, show that if NN is the coast of the
algorithm and OPT is the cost of the optimal tour that

NN

OPT
≤ a + b

2 · a
.

Hint: Assume that OPT uses exactly k edges with weight a. Try to bound how often edges with
weight a are used by NN in dependence of k. (7 Points)

Sample Solution

a) We can use the same graph as in the lecture, the 4-clique, let’s say with nodes t, u, v, w. Assume
every edge has weight a except one edge e.g., (v, w). Clearly, the optimal solution will use 4 edges
of weight a. When NN starts at v, it will take an arbitrary a edge, so for example to u, from here
it will also take an a edge, say to t and from here we will take the a edge to w. Now, to complete
the tour, we are forced to take the b edge. Thus, greedy is not optimal.

1It is even known that every planar graph is 4-colorable.

b) The first step is to show the hint. We use the idea of edge marking from the lecture. Let therefore
AOPT be the edges of weight a of an optimal TSP tour and let ANN be the edges of our NN
algorithm. We call an edge e′ ∈ ANN a marked edge if some incident edge e ∈ AOPT points to it
(as in the lecture). We show that every edge in AOPT points to at least one edge in ANN . Let
e = (u, v) ∈ AOPT , let w.l.o.g. the NN tour visits u before v. Then from u there is an a edge that
can be picked by NN, thus e points to this edge.

Next step is to show that each e ∈ ANN is pointed to by at most 2 edges from AOPT . Since a TSP
tour is a cycle, there can be at most 2 edges from AOPT at each node.

By these two statements it follows |ANN | ≥ |AOPT |/2 = k/2. Hence, we have the following costs:

OPT = k · a + (n− k) · b = k · (a− b) + n · b

NN ≤ k/2 · a + (n− k/2) · b =
k

2
· (a− b) + n · b

Thus, we derive the statement of the task:

NN

OPT
≤

k · (a− b) + n · b− k
2 · (a− b)

k · (a− b) + n · b

= 1−
k
2 (a− b)

k · (a− b) + n · b

≤ 1−
k
2 (a− b)

k · (a− b) + k · b

= 1 +
k
2 (b− a)

k · a

= 1 +
b− a

2a

=
a + b

2a

