
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Mályusz

Algorithm Theory

Sample Solution Exercise Sheet 4
Due: Friday, 15th of November, 2024, 10:00 am

Remark: You are required to use the principle of dynamic programming in all of your algorithms.
It is preferable if you write the algorithms in pseudocode.

Exercise 1: Paper Submissions (6 Points)

Professor Kuhn has to finish writing n different research papers pi and would like to submit each one
of them to a conference. However each paper pi takes ti time to be done and submitted by deadline
di i.e. each deadline is according to the conference that the Professor wants to submit that paper in.
Note that when we say by deadline di, we mean that at the latest the paper submission should be at
time di. Moreover, writing any paper is available to be scheduled starting at time s.
Now, the task of writing the full paper pi and then submitting it needs to be assigned a period from
si ≥ s to fi = si + ti, and doing the same task for different papers should be assigned nonoverlapping
intervals. Such an assignment of times will be called a schedule.
We consider the case in which writing each paper must either be finished and submitted by its deadline
or not at all. We’ll say that a subset P of the papers is schedulable if there is a schedule where the
Professor is able to finish writing each paper in P and submit each of them by its deadline. Your
problem is to select a schedulable subset of papers of maximum possible size and give a schedule for
this subset that allows each paper to be fully written and submitted by its deadline.

Assume that all deadlines di and required times ti are integers and di ≥ ti. Give an algorithm to
find an optimal solution. Your algorithm should run in time polynomial in the number of papers that
needs to be written and submitted n, and the maximum deadline D = maxi di. Argue correctness and
running time.
Hint: Prove that there is an optimal solution P (i.e., a schedulable set of maximum size) in which the
papers in P are scheduled in increasing order of their deadlines.

Sample Solution

(a) Using a simple exchange argument, we can see that if at any point in an optimal schedule some
paper pi was scheduled just before some other paper pj such that dj < di , then one can build a
new optimal schedule with only pi and pj swapped and nothing else changed i.e. all papers will
still finish by their deadlines.

(b) Algorithm idea and correctness: Assume the papers are given by increasing order of
deadlines and we will assume w.l.o.g that they are numbered this way i.e. we assume that this is
the corresponding deadlines for our input set of papers p1, p2, ..., pn are d1 ≤ d2 ≤ ... ≤ dn = D,
respectively. We will define two different parameters for our recursive function. For 0 ≤ d ≤ D
and j = 1, . . . , n, let OPT (D,n) denote the maximum schedulable subset of papers from the set
{p1, . . . , pn} that can be satisfied by the deadline D i.e. each pi ∈ {p1, . . . , pn} will be submitted
by time min{di, D} (so after time D we cannot submit any paper anymore even if the deadline
di of the paper is di > D).

We now have two cases: either the last paper pn will be chosen in the schedule and submitted
or not. If pn is not chosen, then the problem reduces to the subproblem using only the first
n − 1 papers. On the other hand, if paper pn is chosen, then by part (a) we know that we
may assume that paper pn will be scheduled last. In order to make sure we submit pn by its
deadline min{dn, D} , all other papers pi chosen for our schedule should be also done by time
min{di, D − tn}.
Hence we have only the following cases:

� If paper n is not chosen in the optimal solution OPT (D,n), then
OPT (D,n) = OPT (D,n− 1) (or better OPT (D,n) = OPT (min{D, dn−1}, n− 1))

� If paper n is chosen in the optimal solution OPT (D,m) and this can only happen iff
tn ≤ D, then OPT (D,n) = OPT (D−tn, n−1)+1 (or better OPT (D,n) = OPT (min{D−
tn, dn−1}, n− 1) + 1)

For the base case we have for 0 ≤ d ≤ D, OPT (d, 0) = 0, hence taking the maximum of both
cases above gives us the final solution.

Based on that, we propose the following top down and bottom down dp algorithm using
memoization:

Algorithm 1 Schedule(D,n) ▷ memo is a 2-dimensional array initially empty

if n = 0 then return 0 ▷ base case
if memo[D,n] ̸= Null then return memo[D,n] ▷ decision was made before

memo[D,n] ← max

{
Schedule(min{D, dn−1}, n− 1)

Schedule (min{D − tn, dn−1}, n− 1) + 1 if tn ≤ D
▷ Memoization

return memo[D,n]

And the following is a bottom top algorithm (a way to build up values for the subproblems):

Algorithm 2 Schedule(D,n)

Array S[0 . . . D, 0 . . . n]
for d = 0, . . . , D do

S[d, 0] = 0

for m = 1, . . . , n do
for d = 0, . . . , D do

if tm > d then
S[d,m] = S[min{d, dm−1},m− 1]

else
if S[min{d, dm−1},m− 1] > S[min{d− tm, dm−1},m− 1] + 1 then

S[d,m] = S[min{d, dm−1},m− 1]
else

S[d,m] = S[min{d− tm, dm−1},m− 1] + 1

return S[D,n]

Running time: we have (D+ 1)× (n+ 1) entries in our 2D array to fill, i.e. (D+ 1)× (n+ 1)
subproblems (notice that in the iterative procedure how we are filling our matrix column by
column). Moreover, when filling the matrix iteratively (in the bottom top approach) or due to
memoization (in the top bottom approach), we compute each entry value memo[i, j] for i, j ∈
{0, 1, ..., n} × {0, 1, ..., D} once. Also, each computation of memo[i, j] costs O(1) in the current
step (i.e. not counting the cost of recursive calls, thus the only thing we are doing is determining
the maximum between two values). Therefore, the total running time is O(n ·D).

Exercise 2: Generalized Max. Product Subarray (7 Points)

Given an integer array A of length n, and an integer m (where m ≤ n). The goal is to find the
maximum product that can be obtained by selecting exactly m non-overlapping contiguous subarrays.
Note that each subarray should be non-empty. The following is an example:
Let A = [1,−2, 3,−4, 5,−6, 0, 7, 8, 9, 0] and m = 3.
The maximum product can be achieved by choosing the subarrays [3,−4, 5,−6], [7], and [8, 9] with a
total product of 3×−4× 5×−6× (7)× (8× 9) = 181440.

Give a polynomial time algorithm that achieves our goal. Argue correctness and run time.

Sample Solution

Rough idea and correctness: Notice that for m = 1 it is the original maximum product subarray
problem discussed as an extra bonus question in our very first tutorial session, so this question is a
generalization of it.
Now let max(i, k) be the maximum product that is obtained by selecting exactly k nonoverlapping
contiguous subarrays from the subarray [A[0], ..., A[i]]. Similarly, we define min(i, k) to be the
minimum product that is obtained by selecting exactly k nonoverlapping contiguous subarrays from
the subarray [A[0], ..., A[i]].
Now we have only the following cases for both max(i, k) and min(i, k) (which we keep track of
simultaneously):

� If A[i] was not part of the optimal solution, then
max(i, k) = max(i− 1, k) and
min(i, k) = min(i− 1, k)

� If A[i] is part of the optimal solution and is considered an array on its own, then
max(i, k) = max{A[i].max(i− 1, k − 1), A[i].min(i− 1, k − 1)} and
min(i, k) = min{A[i].max(i− 1, k − 1), A[i].min(i− 1, k − 1)}

� If A[i] is part of the optimal solution and belongs to the final subarray (ie the kth one) that will
also include at least A[i− 1] in it, then

max(i, k) = max1≤r≤i−k+1{A[i]....A[i−r]max(i−r−1, k−1), A[i]....A[i−r]min(i−r−1, k−1)}
andmin(i, k) = min1≤r≤i−k+1{A[i]....A[i−r]max(i−r−1, k−1), A[i]....A[i−r]min(i−r−1, k−1)}

For the base case, we can learn for all i = 0, ..., n − 1, the values max(i, 1) and min(i, 1) by solving
the original problem i.e. for m = 1 in O(n) (we did this in our first tutorial session as mentioned
above) and for i = 1, ..., n− 1, we set max(i, i+ 1) = min(i, i+ 1) = A[0]...A[i].

Now for the final value of max(i, k) (and min(i, k)), we take the maximum (and minimum resp.)
amongst the max(i, k) (and min(i, k) resp.) values of the above three cases.
Note that for each k = 1, ...,m, we will only compute the values max(i, k) (and min(i, k)) for
i = k − 1, ..., n− 1, as the other values can’t exist.

Running time: Notice that in the dp algorithm based on our recursion above, we would have to
fill the upper triangular matrix of both the two 2D arrays simultaneously (one array for the max
and another for the min). Hence we have O(mn) entries, i.e. we have O(mn) many subproblems
to compute. Moreover, when filling the matrix iteratively (in the bottom top approach) or due to
memoization (in the top bottom approach), we compute each entry value max(i, k) and min(i, k)
once. Also, the computation of max(i, k) and min(i, k) each costs O(n) in the current step (i.e. not
counting the cost of recursive calls, because the only thing we are doing is determining the maximum
(min resp.) between three cases: for the first two cases above we spend O(1) time, however for the
final case, which is the most expensive step, we would have to check the max (min resp) of O(n) values
in the worst case). Therefore, the total running time is O(n2m).

Exercise 3: Longest Walk (7 Points)

Suppose you are given a graph G = (V,E), where each node v ∈ V is labeled with an elevation value
h(v) ∈ N. You can safely traverse an edge (u, v) ∈ E from node u to node v if and only if the absolute
difference between the elevation values of u and v is at most δ, that is, |h(u)− h(v)| ≤ δ, where δ > 0
is an integer parameter.

Our goal now is to find a longest possible walk in the graph such that the walk starts at some node
s ∈ V and ends at another node t ∈ V . The walk should consist of two segments: an uphill segment,
where the elevation must strictly increase in each step, followed by a downhill segment, where the
elevation must strictly decrease in each step.

Note that a walk in a graph is path on which nodes are allowed to repeat. Note however that in the
uphill segment, the elevation values are strictly increasing and in the downhill segment, the elevation
values are strictly decreasing. Each node can therefore appear at most once in the uphill segment and
at most once in the downhill segment. A node can however appear in the uphill and in the downhill
segment.

Your input consists of the graph G = (V,E), the elevation function h : V → N, the starting node s,
the target node t, and the parameter δ > 0. Your task is to find a longest possible walk as described
above or determine that no such walk exists.

Give an algorithm that solves the problem in time O(nm), where as usual n = |V | and m = |E|.
Argue correctness and run time.

Hint: It makes sense to first solve the following problem: For every v ∈ V , find the longest path from
s to v on which the elevation values strictly increase or determine that no such path from s to v exists.

Sample Solution

Rough idea and correctness: We first solve the simpler version of the problem where given a fixed
starting node s and a target node t as input and the goal is to find the longest such walk starting
from this s and ending in this t. Initially, we can get rid of any edge that doesn’t satisfy the property
|h(u) − h(v)| ≤ δ and now we work on our new graph G′ (which could be disconnected). Next, we
make sure via eg BFS that s and t belong to the same connected component, otherwise we know no
such walk from s to t exists.
Now, let uphill(s, v) be the value of the longest path value from s to v on which the elevation values
strictly increase in G′ or determine that no such path from s to v exists. Similarly let downhill(v, t)
be the value of the longest path value from v to t on which the elevation values strictly decreases or
determine that no such path from v to t exists.
Afterwards, we compute for each v ∈ V , the values uphill(s, v)and downhill(v, t). Thus the final
solution should be maxv∈V {uphill(s, v) + downhill(v, t)}. Hence we only need to solve the hint to
solve our problem i.e. for all v ∈ V compute all uphill(s, v) values and in an analogous way we can
find all the downhill(v, t) values.
Thus let’s answer the hint. First we orient the graph we are working on such that for every edge (u, v)
we orient u into v iff h(u) < h(v). Now, we notice that our graph is a DAG. And for such graphs
we can find a topological order in O(m+ n), thus we can enumerate our vertices {v1, v2, ..., vk} where
k ≤ n according to the topological order i.e. for every edge (vi, vj) we have that i < j.
Now our problem can be refomulated to finding the longest directed path from s to any v if it exists.
To eliminate the nodes that don’t have a directed path from s to them, we can eg in O(m + n) run
a BFS algorithm over the oriented graph starting from s (i.e. the BFS proceeds only over outgoing
edges i.e. the fist level is s and the second contains all out neighbors of s and so on..), and at the end
we know that all nodes v that this BFS didn’t visit don’t have a directed path from s to them, hence
we can output that no such s to v directed path exists and only consider the nodes that are reachable
from s in the following. Let N−(v) be the set containing all incoming neighbors of v.
We notice the following recusion uphill(s, v) = 1 +maxu∈N−(v)uphill(s, u).
And for the base case, we have uphill(s, s) = 0.

Hence if we use this recursion to compute the uphill value from s to the final node that is reachable
from s according our topological order, we would have also computed all uphill(s, v) values for any v
by doing so and answered the hint.
To see this notice that the nodes vi on any directed path must have their corresponding indices in
an increasing order ie for any subpath vi → vj → vk we should have that i < j < k. So we will
notice that each uphill(s, vi) will only use precomputed (memoized) values i.e. only values of the form
uphill(s, vj) for j < i to compute its own uphill value.

Finally, if we want to solve the more general version of the problem where we don’t have a fixed s
and t rather we ask to find the longest such walk starting from any s and ending in any t, then we
first notice that the ascending and desceding segments will have to be the same length i.e. an optimal
solution would be to find the longest directed path in the graph and use the same path for the longest
walk ie we go up and down on that same path. Hence, it would be enough to check for every node
s what is the longest directed path from this s to any other node anf for that we need to compute
uphill(s, v) for all v and we can do so using the simpler version of the problem. Eventually, we take
the compute the maxs∈V

(
maxv∈V uphill(s, v)

)
for the final solution (we can multiply it by 2 if we

want to consider the length of the longest walk).

Running time:
For the simpler version, we have at most n subproblems ie corresponding to the values of the uphill(s, v)
for all v reachable from s via a directed path. And if we give a dp algorithm based on our recursion
above, then the computation of each such subproblem corresponding to finding uphill(s, v) takes at
most the degree(v) much time (i.e. ofcourse and as always without not counting the cost of recursive
calls), thus all in all the running time for solving the hint will be O(

∑
v∈V degree(v)) = O(m).

Analogously, we spend O(m) for the downhill value and to find maxv∈V {uphill(s, v)+ downhill(v, t)}
we have an additive O(n) in the running time. Moreover, for the BFS algorithm and topological
sorting we will spend another additive O(m+n). Therefore the overall running time will be O(m+n).

As for the general version, we will have to invoke the simpler version solution n times, which will give
us a total running time of O(n(m+ n)) which is in O(nm).

