
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 5
Due: Monday, 22th of November 2024, 10:00 am

Assumption: You may assume that calculations with real numbers can be performed with arbitrary
precision in constant time.

Exercise 1: DP (10 Points)

Given a tree G = (V,E), an integer d ∈ N, and a weight function w : V → R+, your task is to select
a subset S ⊂ V of the nodes that maximizes the sum

∑
u∈S w(u) while ensuring that the subgraph

induced by S, denoted G[S], has a maximum degree of at most d.

(a) Solve the problem if d = 1 and w ≡ 1 in O(n log n). (2 Points)

(b) Now solve the general problem in O(d · n log n) (5 Points)

(c) Now solve the general problem in O(n log n) (3 Points)

Sample Solution

(a) This is similar to the maximum matching problem on a tree, which can be solved optimally by
a DP solution.

Define:

• dp[u][0]: The maximum weight of the subtree of u if u is not in S.

• dp[u][1]: The maximum weight of the subtree of u if u is in S but no child of u is in S.

• dp[u][2]: The maximum weight of the subtree of u if u is in S and a child is in S as well.

For each node u:

• If u is in S, exactly one child is allowed to be in S as well (but is not allowed to have a
child itself in S)

• If u is not in S, all its children are allowed to be in S, but do not need to.

For the base cases, we can define dp[u][0] = 0, dp[u][1] = 1, dp[u][2] = 0 for every leaf node u.
From here we recursively go up the tree and compute the values as follows, let u be a non-leaf
node, where these 3 values are already computed for all its children:

dp[u][0] =
∑

child v of u

max
b∈{0,1,2}

dp[v][b]

dp[u][1] = 1 +
∑

child v of u

dp[v][0]

dp[u][2] = 1 + max
child w of u

dp[w][1] +
∑

child v of u \ w

dp[v][0]



This leads to a solution with a complexity of O(n) due to the tree structure where we have
exactly n− 1 edges and these three computation take time O(deg(v)) per node.

(b) General Solution with Complexity O(d · n log n)

For the general case where w is not necessarily constant and d can be greater than 1:

• We use a dynamic programming approach with sorting to manage the constraints efficiently.

Define:

• dp[u][k][0]: The maximum weight sum obtainable from the subtree rooted at u, where
exactly k children of u are in S and u itself is not in S. This is for any 0 ≤ k ≤ d.

• dp[u][> d][0]: The maximum weight sum obtainable from the subtree rooted at u, where
more than d children of u are in S and u itself is not in S.

• dp[u][k][1]: The maximum weight sum obtainable from the subtree rooted at u, where
exactly k children of u are in S. u itself is in S. This is for any 0 ≤ k ≤ d.

Note that there is no such thing as a dp[u][> k][1] case. What are the base cases? Again, for
any leaf node u we define the base cases to be as follows:

∀0 ≤ k : dp[u][k][0] = 0

dp[u][0][1] = w(u)

∀1 ≤ k : dp[u][k][1] = 0

Now lets look on the non-base cases u. For definition, let’s define Bk(u) as the set that contains
all k-sized subsets of children of u. And let C(u) be all the children of u. Then for any 0 ≤ k ≤ d:

dp[u][k][0] = max
B∈Bk(u)

∑
v∈B

(
max

0≤k′≤d
dp[v][k′][1]

)
+

∑
v∈C(u)\B

(
max
0≤k′

dp[v][k′][0]

)
For that one special case where more than d children are in the optimal solution

dp[u][> d][0] =
∑

v∈C(u)

max
0≤k′

max
b∈{0,1}

dp[v][k′][b]

and if u is in S then:

dp[u][k][1] = w(u) + max
B∈Bk(u)

∑
v∈B

(
max

0≤k′≤d−1
dp[v][k′][1]

)
+

∑
v∈C(u)\B

(
max
0≤k′

dp[v][k′][0]

)
How to implement it efficiently? First note that all these max values like max0≤k′≤d−1 dp[v][k′][1]
are fixed (and already computed) values and hence we know them. To find the best B in
the first equation, we compute max0≤k′≤d dp[v][k′][1] − max0≤k′≤d dp[v][k′][0] for each child v
and sort regarding this values. Hence, the best k best values here always give us the best k-
elementing subset of the childrens. Hence, for a given u we can compute all the dp[u][k][0] in
time O(d · deg(v) · log(deg(v))). The same is also true for all the dp[u][k][1] values of u. Thus,
the overall time is as follows:∑

v∈V
O(d · deg(v) · log(deg(v))) ≤ O(d · log n ·

∑
v∈V

deg(v)) = O(d · n · log n)

(c) Optimized General Solution with Complexity O(n log n)

Optimize the DP by realizing that we do not need a solution of dp[u][k][0] for every k, as stated
above, it is enough if we store the best values smaller d, exactly d and greater d. The same is
true for dp[u][k][1]. Hence, each node has to compute only O(1) values (i.e., for node u it would
be dp[u][< d][0], dp[u][= d][0], dp[u][> d][0], dp[u][< d][1], dp[u][= d][1]) instead of the O(d)
many as before. By the same analysis as above, we can spare the factor O(d).

Exercise 2: Making binary search dynamic (10 Points)

Binary search of a sorted array takes logarithmic search time, but the time to insert a new element is
linear in the size of the array. You can improve the time for insertion by keeping several sorted arrays.
Specifically, suppose that you wish to support Search and Insert on a set of n elements. Let
k = dlog2(n + 1)e, and let the binary representation of n be 〈nk−1, nk−2, . . . , n0〉. Maintain k sorted
arrays A0, A1, . . . , Ak−1, where for i = 0, 1, . . . , k− 1, the length of array Ai is 2i. Each array is either
full or empty, depending on whether ni = 1 or ni = 0, respectively. The total number of elements
held in all k arrays is therefore

∑k−1
i=0 ni · 2i = n. Although each individual array is sorted, elements

in different arrays bear no particular relationship to each other.

(a) Describe how to perform the Search operation for this data structure. Analyze its worst-case
running time.

(b) Describe how to perform the Insert operation. Analyze its worst-case and amortized running
times, assuming that the only operations are Insert and Search.

(c) Describe how to implement Delete. Analyze its worst-case and amortized running times,
assuming that there can be Delete, Insert, and Search operations.

Sample Solution

(a) Using binary search, we can search for an element in O(log n) time within an array. As we have
k arrays altogether, the runtime of search is O(k · log n) = O(log2 n).

(b) Insertion of an element x works as follows: We search for the first array that is empty, say
array Am, then we merge the arrays A0, ..., Am−1 into array Am (of size 2m) and add the element
x into Am as well. Then we empty the arrays A0, ..., Am−1. Note that this ensures that Am is
full, while all the previous ones are empty after the operation. The question is how to exactly
merge these arrays efficiently. One possibility is the following: We put x into a new Array of
size 1 and merge it together with A0 into a new array of size 2. This new array is now merged
with A2 and so on. Hence, we always merge two arrays of the same size.

• Worst-Case: For merging two sorted arrays, we will use the merge step as we know from
MergeSort. Hence, merging arrays of size B1 and B2 will take time O(B1 + B2). Thus,
merging all the A0, ..., Am−1 arrays takes the following time:

m−1∑
i=0

O(2i) = O(2m)

Since the worst case is when m = k = dlog2(n+ 1)e, the worst case time is O(n).

• Amortized: Here we show that the amortized cost of an insert operation is in O(log n).
First, say we use the aggregation method. We know from above that merging two layers i
and j where i > j takes time O(i). For simplicity let’s normalize this costs to costs exactly
i. Note that an empty A0 will be filled by the next insert, an empty A1 will be filled by
2 inserts, A3 will be filled by 4 inserts, and so on. Note that this means, that we have
merge costs of 2 when we merge A1. This we have in n/2 operations. In n/4 of our insert

operations we have to pay costs of 4 as we fill A2. This proceeds and hence, we pay the
following overall costs

n+ 2 · n
2

+ 4 · n
4

+ 8 · n
8

+ ...+ (k − 1)
n

k − 1
= k · n

Thus, the amortized cost is k·n
n = k = O(log n).

Alternative with Potential Function Method: We define the potential of the r-th insert as
follows:

φr :=
∑

Aiis full

(k − i) · 2i

Note that this means φ0 = 0 (before the first element got inserted). Before computing the
potential difference, note that for m ≥ 1 the following is always true (can be shown by
induction).

m−1∑
i=0

i · 2i ≤ (m− 1) · 2m

We now want to show that for any r, that ar = tr + φr − φr − 1 can be bounded by O(k).
We do some case distinction. First case is that A0 is empty before the insert. Not that this
implies that φr = φr−1 + k. Further, by our worst-case observation we have (normalized)
costs of 20 = 1. Thus,

ar = 1 + k.

In the second case A0 is full. Let Am be the insert that is filled with the next element, i.e.,
A0, A1, ..., Am−1 are full before the insert. By that, we have

φr−1 =

m−1∑
i=0

(
(k − i) · 2i

)
+

∑
Aiis full and i>m

(k − i) · 2i

= k ·
m−1∑
i=0

2i −
m−1∑
i=0

i · 2i +
∑

Aiis full and i>m

(k − i) · 2i

≥ k · (2m − 1)− (m− 1) · 2m +
∑

Aiis full and i>m

(k − i) · 2i

= (k −m) · 2m − k + 2m +
∑

Aiis full and i>m

(k − i) · 2i.

Further, we have

φr−1 = (k −m) · 2m +
∑

Aiis full and i>m

(k − i) · 2i

Like before, we have tr = 2m. We are now ready to complete our statement:

ar = tr + φr − φr−1
≤ 2m + (k −m) · 2m − ((k −m) · 2m − k + 2m)

= 2m + (k −m) · 2m − (k −m) · 2m + k − 2m

= k

So we have seen that in both cases ar = O(k) = O(log n).

(c) Assume we want to delete an element x. First, we search x in O(log n) time (as described in
the first task) and let Am be the array containing x. Let i be the smallest index where Ai is
full. If i = m, we delete x and distribute the remaining elements into A0, A1, ..., Ai−1 (as they
are empty). If m > i, we delete x in Am and replace it with an arbitrary element from Ai. Note
that the replacement could take O(n) time in worst-case, as we may have to shift the element
to a position that makes the array sorted. Thus, the worst case here is O(n).

Exercise 3: Problem for the exercise session (0 Points)

Your plan to implement a Stack with the classical operations push, pop and peek. As underlying
data structure you use a dynamic array that will grow its size whenever ’many’ elements are stored
and on the other hand also shrinks its size when only a view elements remain in the array. In the
following let ni be the number of elements stored in the array and let si be the size of the array after
the i-th operation.

• Before you push a new element x to the array, you check if ni−1 + 1 < 80% · si−1. If this is the
case then you simply add x. We say for simplicity, that this can be done in 1 time unit. If on
the other hand ni−1 + 1 ≥ 80% · si−1, you set up a new (empty) array of size si := 2si−1 and
copy all elements (and x) into the new one. We assume this can be done in si−1 time units1.

• To pop an element from the array, you first check if ni−1 − 1 > 20% · si−1. If this is the case
then pop x within 1 time unit. If the table size is small, say si−1 ≤ 8, you also just pop x. But,
if ni−1 − 1 ≤ 20% · si−1 and si−1 > 8, create a new (empty) array of size si := si−1/2 and copy
all values except x into this new array. By assumption, this step takes si time units.

• The peek operation returns the last inserted element in 1 time unit. Note that state of the
array does not change, i.e., ni−1 = ni and si−1 = si.

Initially, the array is of size s0 = 8. Assume that this initial step can also be done in 1 time unit.
Note that by this initial size and the definition of the pop method we have si ≥ 8 for all i ≥ 0. Also
note that after every operation that resized the array at least one element can be pushed or popped
until a further resize is required.

a) Let i be a push operation that resized the array. Show that the following holds.

0.4 · si ≤ ni < 0.55 · si

Further, show that if i is a pop operation that resized the array, the following holds.

0.25 · si < ni ≤ 0.4 · si

b) Use the Accounting Method from the lecture to show that the amortized running times of
push, pop and peek are O(1), i.e., state by how much you additionally charge these three operation
and show that the costs you spare on ’the bank’ are enough to pay for the costly operations.
Hint: Use the previous subtask, even if you didn’t manage to show them.

c) Show the same statement as in the previous task, but use the Potential Function Method this
time, i.e., find a potential function φ(ni, si) and show that this function is sufficient to achieve
constant amortized time for the supported operations.
Hint: There is not just one but infinitely many potential functions that work here. However, you
may want to use a function of the form c0 · |ni − c1 · si| for some properly chosen constants c0 > 0
and c1 > 0.

1For a simpler calculation we use normalized time units, such that all the operations that would take O(1) time will
take at most 1 time unit and operations that would take O(si−1) time will take at most si time units.

Sample Solution

a) Push: It is clear that for the previous state ni−1 < 0.8si−1 is true (otherwise there would have been
a resize before) and by definition also ni−1 + 1 ≥ 0.8si holds. Since ni = ni−1 + 1 and si = 2si−1
we directly get 0.4 · si ≤ ni < 0.4 · si + 1 ≤ 0.525 · si (because si ≥ 8). This implies the statement.
Pop: For similar reasons as before, we have 0.2 · si−1 < ni−1 ≤ 0.2 · si−1 + 1. Substituting
ni = ni−1 − 1 and si = si−1/2 we get 0.4 · si < ni + 1 ≤ 0.4 · si + 1. By subtracting all sides by 1
and use that 1 ≤ si/8 we get 0.275 · si < ni ≤ 0.4 · si. This implies the statement.

b) We charge all 3 operations by 25 ’dollars’. Every push, pop or peek operation costs one actual
dollar (not counting resizing) and puts the remaining 24 in the bank to pay for resizing. Now, let
us estimate how much money is at least in the bank before the next resizing takes place. Observe
that we can ignore peek operations in the following, since they just increase our bank account
(by 24 per operation) and do not change the state of the array. Let us for now assume that the
last operation (say operation i) did a resizing and currently there is no money at our account.
If this last resize operation was ’push’, then we have 0.4 · si ≤ ni < 0.55 · si. Thus, the next
costly operation can not happen before (0.8− 0.55)si = 0.25si push or (0.4− 0.2) · si = 0.2si pop
operations. Before we proceed, let us see how it looks if operation i was a pop operation. By the
statement of the previous task we have the next costly operation not before (0.8− 0.4) · si = 0.4si
push or (0.25−0.2) ·si = 0.05 ·si pop operations. By this analysis, the worst-case (i.e., the shortest
chain of operation until the next resize) is a costly pop operation that is followed by more than
0.05 · si additional deletings. Since we charge both operation with the same amortized cost, we
clearly have more ’money’ on our account in the other cases. Also observe that if we alternate
between pushing and deleting over and over, the hash table is never resized, so we save up a lot
of money in the bank. For that, assume operation i is a pop operation and from here on at least
0.05 · si further pop operations follow until the next resize comes. The money on the bank after
these many operations is at least (25 − 1) · 0.05 · si = 1.2 · si. Because the costly operation costs
1 ·si, we can afford it and thus, the bank account never drops below zero. Therefore, the amortized
cost of pop is O(1). This, by above’s analysis, also implies amortized costs of O(1) for push (as
well as for peek).

c) We define our potential function by φ(ni, si) := c0 · |ni−c1 ·si| and start by guessing some constant
c1 ∈ [0, 1]. For some intuition: We want our potential to be large before a resizing operation and
small (close to zero) after a resizing operation. To make sure that the potential before resizing is
not 0, we have to choose c1 6= 0.8 in the push case and c1 6= 0.2 in the pop case. So let us ’guess’
c1 = 0.4 and show later that it works. Now we go through all operations and proof that by choosing
a large enough c0 > 0, all amortized costs are in O(1). Note that we are going into 5 cases now,
that we call peek, cheap push (push without resizing), costly push (includes resizing), cheap
pop (deleting without resizing) and costly pop (includes resizing). Like in the lecture, we notate
the actual cost of operation i by ti and its amortized costs by ai := ti + φ(ni, si)− φ(ni−1, si−1).

Peek Here we have si = si−1 and ni = ni−1 and thus,

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni − 0.4si|
= 1

Cheap Push Here we have ni = 1 + ni−1 and si = si−1

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni − 1− 0.4si|
≤ 1 + c0 · |ni − 0.4si| − c0 · (|ni − 0.4si| − 1)

≤ 1 + c0

Note that this implies that ai ∈ O(1) if c0 is a fixed constant.

Costly Push Here we have ti = si−1, si = 2si−1, ni = ni−1 + 1 and by the first subtask
0.55si > ni ≥ 0.4si

ai = si−1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|

=
si
2

+ c0 · |ni − 0.4si| − c0 · (|ni − 0.2si| − 1)

≤ si
2

+ c0 · (ni − 0.4si)− c0 · (ni − 0.2si) + c0

≤ si
2
− 1

5
· c0 · si + c0

≤ c0

That the last step only follows if we choose c0 ≥ 5
2 .

Cheap Pop Here we have ni = −1 + ni−1 and si = si−1

ai = 1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 1 + c0 · |ni − 0.4si| − c0 · |ni + 1− 0.4si|
≤ 1 + c0 · |ni − 0.4si| − c0 · |ni − 0.4si|+ c0

≤ 1 + c0

Costly Pop Here we have ti = si−1, si = si−1/2, ni = ni−1−1 and by the first subtask ni > 0.25si
and ni ≤ 0.4si.

ai = si−1 + c0 · |ni − 0.4si| − c0 · |ni−1 − 0.4si−1|
= 2si + c0 · |ni − 0.4si| − c0 · |ni + 1− 0.8si|
≤ 2si + c0 · (0.4si − ni)− c0 · (0.8si − ni) + c0

= 2si −
2

5
· c0 · si + c0

≤ c0

That the last step only follows if we choose c0 ≥ 5.

Final Statement It is clear by the previous calculations that if we choose c0 := 5 the amortized
costs for all 3 operations are at most ai ≤ 1+c0 = 6 and therefore constant. The potential function
used is

φ(ni, si) := 5 · |ni −
2

5
· si| = |2 · si − 5 · ni| ≥ 0

Remark : We have that φ(n0, s0) = 5 · |0 − 2
5 · 8| = 16 and hence

∑
i ti ≤ 16 +

∑
i ai. This does

not completely match with the definition of amortized costs, however we can fix this problem by
choosing the potential function φ′(ni, si) := 5 · |ni− 2

5 ·si−
16
5 |. Here we have φ′(n0, s0) = 0. Further

we have that for all i, |φ′(ni, si)− φ(ni, si)| ≤ 16 holds, and thus we can simply adjust the 5 cases
and show that for each operation it follows ai ≤ ti +φ(ni, si)−φ(ni−1, si−1) + 2 · 16 ≤ 6 + 32 = 38.

