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Exercise 1: Efficient Sorting in a Connected System (8 Points)

We are given a system of N elements, each uniquely labeled 1 to N. Initially, the elements are
distributed across N locations, also labeled 1 to N. Let p = (p1,p2,...,pN) represent a permutation
of (1,2,..., N), where p; denotes the current location of element i. The objective is to sort the elements
such that element i is at location ¢ for all i € {1,2,..., N}.

The system is also equipped with a set of bidirectional connections, called tunnels, which can be used
to swap elements between locations. Each tunnel connects two distinct locations (a;, b;) and has an
associated capacity w;. The capacity of an edge has nothing to do with the numbers on the vertices
it is just a number. The sorting process involves using these tunnels to perform swaps.

The goal is to determine the maximum minimal tunnel capacity that allows the elements to sort
themselves into their designated locations. In other words, given a solution take the smallest capacity
edge used in the swaps. You wish to maximize this number.

(a) Prove that if for every element ¢, location p; is already in the same connected component as
location ¢ we can sort. (2 Points)

(b) Solve the problem if you can only use tunnels with capacity > w, determine whether the system
can be sorted using only tunnels with capacity at least w. This should be accomplished in O(N +
M - a(N)) amortized time, where (V) is the inverse Ackermann function. (8 Points)

(¢) Solve the full problem, determine the maximum minimal tunnel capacity required to sort the
system. This should be accomplished in O(log M - (N + M - «(N))) amortized time. (3 Points)

,where M is the number of tunnels.

Example

If you are given the permutation [2,3,1] and tunnels (1,2) of weight 1, (2,3) of weight 2 and (1, 3) of
weight 5. If we choose the tunnels (1,2) and (2, 3) with weights 1 and 2 respectively then the minimum
is 1. If you choose (1,3) with weight 5 and (2, 3) with weight 2 then the minimum is 2. You want to
maximize this minimum.

Sample Solution

(a) First take a spanning tree in the connected component. We sort by iteratively putting the leaf
nodes into the correct place.

(b) Create a DSU set for each connected component. If every component fulfills the (a) subproblem
condition we have solved it.

(c) We just sort the weights and use binary search on finding the correct capacity and use the (b)
subproblem to solve the created subproblems.



Exercise 2: Dynamic Friendship and Enmity Maintenance (12 Points)

You are tasked with maintaining dynamic relationships between individuals during a peace talk. The
relationships are governed by rules defining friendships and enmities. The operations available must
preserve these rules and provide answers efficiently.

The problem involves n individuals, with operations performed to establish or query their relationships.
Implement the following operations, ensuring all constraints are respected:

SETFRIENDS(z,y): Declares x and y as friends.

e SETENEMIES(z,y): Declares x and y as enemies.

AREFRIENDS(z,y): Queries whether x and y are friends.

AREENEMIES(z, y): Queries whether x and y are enemies.
The relationships between individuals are subject to the following rules:

e Friendship (~) is an equivalence relation:

— Transitivity: The friends of my friends are my friends as well.
T~YNYy~z — T~Z
— Symmetry: Friendship is mutual.
T~y = Yy~
— Reflexivity: Everyone is a friend of himself.
T~

e Enmity (%) is symmetric and irreflexive:

— Symmetry: Hatred is mutual.
TxYy = Yy*x

— Irreflexivity: Nobody is an enemy of himself.
—(z % x)
e Interaction rules:

— Common Enemy Rule: A common enemy makes two people friends.
THxYNY*xz2 — T~ 2

— Enemy of a Friend Rule: An enemy of a friend is an enemy.
T~YNY*xz2 — T*2

If SETFRIENDS(z,y): Declares z and y as friends, SETENEMIES(z,y): Declares x and y as enemies,
would try to set enemies to friends or in reverse then the algorithm should recognize this. Simply
output that this is wrong according to the current knowledge. Create an algorithm that implements

these operations given N individuals and @ queries (operation calling) in O((Q + N)a(N)) amortized

time.
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Sample Solution

Since the relation of friends is transitive, we can keep sets in which all the people in a set are friends.
For each of these sets of friends, there will also be a set of enemies made up of the union of all the
enemies of each person in the set of friends. Every person in this set of enemies will be an enemy of
every person in the set of friends. To see why this is true, consider a person a in the set of friends F'.
Their enemy is b in the set of enemies F. Since an enemy of a friend is also an enemy, b will be the
enemy of all of a’s friends, which are the other people F. Furthermore, each person in E is friends
with all other people in E, since they share a common enemy a. Create a DSU data structure with
2N elements the first N elements correspond to the people, the last N elements are dummy variables.
The dummy variable ¢ + N is in the enemy set of person 1.

For each query, we let the two people be z and y and the root of z’s friends, y’s friends, z’s enemies
and y’s enemies be xroot, yroot, exroot and eyroot, respectively.

areEnemies

If any of z’s friends are friends with any of y’s enemies, then x will be friends with one of 3’s enemies.
Thus, « and y will be enemies. To check if this is the case, we check if xroot is the same as eyroot
(which means that z’s friends are y’s enemies), or if yroot is the same as exroot (which means that
y’s friends are z’s enemies).

areFriends

If x and y are in the same set, then they are friends.

setEnemies

When setting two people as enemies, we need to check if they are friends. We can use the areFriends
function to do this. If they are not friends, we join xroot ’s set with eyroot ’s set and join
yroot ’s set with exroot ’s set, since the friend of an enemy is also an enemy.

setFriends

If we want to set two people as friends, we first need to check if they are enemies, using the areEnemies
function. If they are not enemies, we can join xroot ’s and yroot ’s sets. The enemies of two sets of
friends will also become friends, so we also join exroot ’s and

eyroot ’s sets.

Exercise 3: Problem for the exercise session (0 Points)

A country has N cities and M power plants, which we collectively call places. The places are numbered
1,2,...,N + M, among which Places 1,2,..., N are the cities and Places N +1,N +2,...,. N+ M
are the power plants.

This country has E power lines. Power Line i (1 < i < E) connects Place U; and Place V; bidirec-
tionally. A city is said to be electrified if one can reach at least one of the power plants from the city
using some power lines.

Now, @ events will happen. In the i-th (1 <14 < Q) event, Power Line X; breaks, making it unusable.
Once a power line breaks, it remains broken in the succeeding events.

Find the number of electrified cities immediately after each event. The running time should be
O(Qa(N + M)).



