
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Mályusz

Algorithm Theory

Sample Solution Exercise Sheet 7
Due: Friday, 6th of December, 2024, 10:00 am

Exercise 1: Worst Case Decrease (4 Points)

We’ve seen in the lecture that Fibonacci heaps are only efficient in an amortized sense. However,
the time to execute a single, individual operation can be large. Show that in the worst case, the
decrease-key operation can require time Ω(n) (for any heap size n).

Hint: Describe an execution in which there is a decrease-key operation that requires linear time.

Sample Solution

A costly decrease-key operation:
We construct a degenerated tree. Assume we already have a tree Tn in which the root rn has two
children rn−1 and cn, where cn is unmarked and rn−1 is marked and has a single child rn−2 that is
also marked and has a single child rn−3 and so on, until we reach a (marked or unmarked) leaf r1. In
other words, Tn consists of a line of marked nodes, plus the root and one further unmarked child of
the root. We give the root rn some key kn.
We now add another 5 nodes to the heap and delete the minimum of them, causing a consolidate.
In more detail let us add a node rn+1 with key kn+1 ∈ (0, kn), one with key 0 and 3 with keys
k′ ∈ (kn+1, kn). When we delete the minimum, first both pairs of singletons are combined to two trees
of rank 1, which are combined again to one binomial tree of rank 2, with the node rn+1 as the root
and we name its childless child cn+1 (confer the picture for the current state).

rn

rn−1

rn−2

⋆

r1

cn

rn+1

⋆

⋆

cn+1

Since also Tn has rank 2 we now combine it with the new tree and rn+1 becomes the new root. We
now decrease the key of cn to 0 as well as the keys of the two unnamed nodes and delete the minimum
after each such operation, as to cause no further effect from consolidate. Decreasing the key of cn,
however, will now mark its parent rn, as it is not a root anymore. Thus the remaining heap is of

exactly the same shape as Tn, except that its depth did increase by one: a Tn+1.
Can we create such trees? We sure can by starting with an empty heap, adding 5 nodes, deleting one,
resulting in a tree of the following form:

We cut off the lowest leaf and now have a T1. The rest follows via induction.
Obviously, a decrease-key operation on r1 will cause a cascade of Ω(n) cuts if applied to a heap
consisting of such a Tn.

Exercise 2: Fibonacci Heaps Modifications - Amortized I (5 Points)

Suppose we “simplify” Fibonacci heaps such that we do not mark any nodes that have lost a child
and consequentially also do not cut marked parents of a node that needs to be cut out due to a
decrease-key-operation. Is the amortized running time

(a) ... of the decrease-key-operation still O(1)? (1 Point)

(b) ... of the delete-min-operation still O(log n)? (4 Points)
Hint: Can we still guarantee the recursive property (proved in the lecture) i.e. a given node with
rank i has i children that have at least ranks i− 2, i− 3, ..., respectively?

Explain your answers.

Sample Solution

Two reasonable answers would be as follows.

(a) Yes. Not having to cut all your marked ancestor nodes only makes decrease-key faster. In fact
each individual decrease-key operation has now runtime O(1). (2 Points)

(b) No. The reason is that we loose the recursive property that a given node with rank i has i children
that have at least ranks i− 2, i− 3, ..., respectively. This was required to show that each tree of a
given rank has a minimum size of Fi+2 (where F is the Fibonacci series) which grows exponential
in i. Consequentially the maximum rank can not be too large, just O(log n), as a tree with higher
rank would require more than n nodes.

Now, if a node can loose an arbitrary number of children without being cut, the above property
can not be guaranteed anymore. In particular, in extreme cases we could end up with a tree with
rank n− 1. Since delete-min has amortized runtime linear in the maximum rank, it will have a
higher amortized running time (i.e., ω(log n)). (4 Points)

Exercise 3: Fibonacci Heaps Modifications - Amortized II (11 Points)

(a) Assume that operation decrease-key never occurs. Show that in this case, the maximum rank
D(n) of a Fibonacci heap is at most ⌊log2(n)⌋. (4 Points)

(b) We want to augment the Fibonacci heap data structure by adding an operation increase-key(v, k)
to increase the key of a node v (given by a direct pointer) to the value k. The operation should have
an amortized running time of O(log n). Describe the operation increase-key(v, k) in sufficient
detail and prove the correctness and amortized running time. (7 Points)

Remark: You can use the same potential function as for the standard Fibonacci heap data structure.
Note however that after conducting increase-key(v, k) the Fibonacci heap must still be a list of
heaps, where the maximum rank D(n) ∈ O(log n).

Sample Solution

(a) First we show inductively that when there are no decrease-key operations, then a heap of rank
i in the rootlist has exactly 2i nodes (we call the number of nodes the size of the heap in the
following). A heap of rank 0 is just a single node, thus it has size 20 = 1.

Given a heap h of rank i > 0 which might also be a sub-heap attached to some parent node. The
only way the degree i of h can be created is by linking two heaps h1, h2 of rank i−1. By induction
hypothesis heaps of rank i−1 have 2i−1 elements. Therefore, the size of the heap h = link(h1, h2)
is the sum of the sizes of h,h2, i.e., 2

i−1 + 2i−1 = 2i.

Remark: When we execute a delete-min operation, then smaller heaps that are attached to the
current minimum are cut and reinserted into the rootlist. But this does not change the the form
of the subheaps of the root in any way, so the induction argument above remains valid.

Since we have only n nodes in the Fibonacci heap in total, the heap with the biggest rank D(n)
must fulfill the inequality

2D(n) ≤ n ⇐⇒ D(n) ≤ log2 n.

Since D(n) is an integer value we have D(n) ≤ ⌊log2 n⌋.

(b) Implementation and correctness arguments: As suggested in the remark, we try to design
the increase-key(v, k) operation to maintain the same conditions of the Fibonacci heap. Specifically,
we ensure in the following that each node looses at most one rank by loosing a child. First we
assert that for increase-key(v, k) the new key k is larger than the current key of v. If k is
smaller than or equal to all the keys of its child nodes, the heap condition is not violated after
changing the key to k and we do nothing else.

Otherwise we first cut out and reinsert all child-heaps of v into the rootlist. Since v has lost too
many children (each node can loose at most one) we also cut v from its parent and reinsert it as
single node into the rootlist. Since v’s former parent now lost a child, we run the cascading cut
procedure on v’s former parent, meaning that all successive marked ancestors of v are cut out and
reinserted into the rootlist. The closest previously unmarked ancestor of v is marked.

Finally we have to consider a special case that forces us to do another step. If the node v whose
key we increased is the current minimum, then we have to go through the whole rootlist to find
the new minimum (or to confirm that v is still the minimum). But then we also have to run a
consolidate like for delete-min. The reason for that is technical: we have to shrink the size of
the rootlist R back down to D(n) in order to “pay” that costly search (and consolidate) with the
associated decrease in potential.

Runtime: The actual cost of our implementation of increase-key(v, k) is composed of the
following components. We have t1 ≤ D(n) steps for cutting and reinserting all child-heaps of v,
since D(n) is the maximum number of children v can have.

The next costly step is the cascading cuts procedure, which takes t2, where t2 is the number of
successively marked ancestors of v plus one or, alternatively, the distance to the closest unmarked
ancestor of v.

Finally, let us assume that we actually increase the key of current the minimum v. Then we have
to find a new minimum and also consolidate, which takes time to the order of t3 ≤ |H.rootlist|,
where R is the size of the rootlist.

The potential of the Fibonacci heap changes as follows:

Rnew = Rold +D(n) + 1− |H.rootlist|
Mnew = Mold − (t2 − 1)

Φnew = Φold +D(n) + 1− |H.rootlist| − 2(t2 − 1).

The difference Φnew−Φold can be used to offset or more precisely amortise our true costs t1+t2+t3:

ai = t1 + t2 + t3 +Φnew − Φold

≤ D(n) + t2 + |H.rootlist|+Φnew − Φold

= D(n) + t2 + |H.rootlist|+D(n) + 1− |H.rootlist| − 2(t2 − 1)

= 2D(n) + 3− t2

≤ 2D(n) + 3 ∈ O(log n).

