
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 8
Due: Friday, 13th of December 2024, 10:00 am

Exercise 1: Ford-Fulkerson Algorithm (5 Points)

Consider the following flow network, where for each edge, the capacity (second number) and a current
flow value (first number) are given. Solve the maximum flow problem on the network by using the
Ford-Fulkerson variant that always picks a best possible augmenting path (an augmenting path that
improves the current flow from s to t by as much as possible) in every iteration. Give intermediate
results, i.e., draw the residual graph with all the residual capacities in every iteration.

s

a

b

cd

t

5/
10 5/9

10/14

1/
98/9

2/4

9/13

9/13

0/
7

Sample Solution

s

a

b

cd

t

5

5

4

5

4
10

8

11

8

2
2

4

9

4

9

70

The best possible augmenting path is: s→ a→ b→ c→ t. This path increases the flow by 5. Hence,
the resulting flow value is 21.
The best possible augmenting path now is: s → d → c → b → t. This path increases the flow by 4.

s

a

b

cd

t

0

10

4

5

4
10

3

66

3

2
2

4

9

4

9

2
5

Hence, the resulting flow value is 25.
The best possible augmenting path now is: s→ b→ c→ t. This path increases the flow by 2. Hence,

s

a

b

cd

t

0

10

4

5

0
14

3

62

7

2
2

0

13

0

13

25

the resulting flow value is 27.
No further improvement possible. Thus, the max. flow is 27.

s

a

b

cd

t

0

10

4

5

0
14

1

84

5

0
4

0

13

0

13

25

Exercise 2: Escape Problem (5 Points)

An n × n grid is an undirected graph consisting of n rows and n columns of vertices. We denote
the vertex in the ith row and the jth column by (i, j). All vertices in a grid have exactly four
neighbors, except for the boundary vertices, which are the points (i, j) for which i = 1, i = n, j = 1, or
j = n. Given ` ≤ n2 starting points (x1, y1), (x2, y2), . . . , (x`, y`) in the grid, the escape problem is to

determine whether or not there are ` vertex-disjoint paths from the starting points to any ` different
points on the boundary. Give an algorithm that solves the escape problem in polynomial time. Check
the figure for an example.

Figure 1: Grids for the escape problem. Starting points are black, and other grid vertices are white.
The grid on the left has an escape, shown by shaded paths. The grid on the right has no escape.

Sample Solution

We construct a flow network as follows:

• Replace every edge in the grid by two directed edges (with capacity 1)

• Split each node v in the grid into two nodes, vin, vout, where all ingoing edges of v will now go
into vin and all outgoings go out from vout. Add a directed edge from vin to vout (capacity 1)

• Add a new startnode vstart that has an outgoing edge to every starting point (i.e. we add `
outgoing edges with cap 1).

• Add new target node vend such that all boundary nodes have a directed edge to vend (we ad).

We will now run Ford-Fulkerson (or any Max-Flow) algorithm on that network. If there exists a flow
with flow value exactly `, we know that ` vertex disjoint path exists as no two path can cross the same
grid vertex as by our vin, vout construction.

Exercise 3: Smallest Minimum Cut (10 Points)

Let G = (V,E) be a flow network with integer capacities ce ≥ 0 for all e ∈ E. Give a new flow network
G′ = (V,E) (that has the same nodes and edges as G) with integer capacities c′e ≥ 0 such that any
minimum cut in G′ is a minimum cut in G with the smallest number of edges (of all minimum cuts in
G). Proof your statement!
Hint: Consider capacities c′e := ce + 1. How does the capacity of a cut change by this choice? Does
this already solve the task or do you need to adjust it?

Sample Solution

Let m := |E| and n := |V |. The intuition is the following: If we would set c′e = ce + 1, we increase the
capacity of each cut (compared to the original value) by the number of edges of the cut. However, the
problem is that cuts that were not minimal in the first place, but contain just few edges, may become
minimum cuts by that choice of c′e. To overcome this problem we use that no cut is containing more
than m edges.

We define the new capacity for each edge e like follows: c′e := m ·ce +1. Let in the following (C, V \C)
be a minimum cut in G′. Now we want to show that (C, V \ C) is also a min cut in G and second,
that (C, V \C) has the smallest number of edges among the min cuts of G. We will now show the first
of these statements by contradiction i.e., assume there is a cut (S, V \ S) that has a smaller capacity
than (C, V \ C) in G. We start measuring the capacity of this cut in G′ and use that the capacity of
(S, V \S) is at least 1 unit smaller than the capacity of (C, V \C) in G since we have integer capacities.∑

e∈(S,V \S)

c′e =
∑

e∈(S,V \S)

(m · ce + 1)

= m
∑

e∈(S,V \S)

ce +
∑

e∈(S,V \S)

1

≤ m

−1 +
∑

e∈(C,V \C)

ce

 + m

=
∑

e∈(C,V \C)

m · ce

<
∑

e∈(C,V \C)

(m · ce + 1)

=
∑

e∈(C,V \C)

c′e

Thus, the capacity of (S, V \ S) would be smaller than the capacity of (C, V \ C) in G′ and that
is a contradiction the definition of (C, V \ C). Now we know that (C, V \ C) is also a minimum
cut in G. It remains to show that we use a minimum number of edges in G. Again, assume for
contradiction purpose that there is a cut (S′, V \ S′), that is also a minimum cut in G but uses fewer
edges i.e.

∑
e∈(S′,V \S′) 1 <

∑
e∈(C,V \C) 1 but

∑
e∈(S′,V \S′) ce =

∑
e∈(C,V \C) ce. Contradiction follows

by the following lines. ∑
e∈(S′,V \S′)

c′e =
∑

e∈(S′,V \S′)

(m · ce + 1)

= m
∑

e∈(S′,V \S′)

ce +
∑

e∈(S′,V \S′)

1

< m
∑

e∈(C,V \C)

ce +
∑

e∈(C,V \C)

1

=
∑

e∈(C,V \C)

(m · ce + 1)

=
∑

e∈(C,V \C)

c′e

Exercise 4: Exercise Session Problem: Blocked Streets (0 Points)

Mr. X has just robbed a bank and is now heading to the harbor. However, the police wants to stop
him by closing some streets of the city. What is the minimum number of streets that should be closed
so that there is no route between the bank and the harbor?

Exercise 5: Exercise Session Problem: Seating Arrangement (0 Points)

A group of students goes out to eat dinner together. To increase social interaction, they would like to
sit at tables such that no two students from the same faculty are at the same table. For that purpose
assume there are students from x different faculties while n1, n2, ..., nx describe the affiliated number

of students from these x faculties. Also assume that there are y tables available while rj students can
take place on the j-th table.
Let us define the seating arrangement as the decision problem returning true if one can distribute
the students from same faculties to different tables and false otherwise. Formulate this seating
arrangement problem as a maximum flow problem and write down the condition that should hold
whenever the original decision problem returns true. Further, give the runtime it takes to solve the
corresponding flow problem in terms of x, y, ni and rj for all 1 ≤ i ≤ x and 1 ≤ j ≤ y.

Sample Solution

The idea is to construct a complete bipartite graph G, where the left side consists of the faculties and
the right side consists of the possible tables. Each edge in between has capacity 1. Adding a node
s on the left, connected to all faculties with corresponding ni capacities and a node t connected to
all tables with corresponding ri capacities completes the graph. The seating arrangement problem
will return true, when the maximum flow of G is

∑x
i=1 ni and false otherwise. The runtime of

Ford-Fulkerson is O(m · C) where m = x + y + x · y = O(x · y) and the maximum flow C is at most
min {

∑x
i=1 ni,

∑y
i=1 ri }. (Note that one can refine the runtime by the fact that if

∑y
i=1 ri <

∑x
i=1 ni

there is no proper seat arrangement possible.)
Alternatively, a more formal definition of the graph:

F = {F1, F2, ..., Fx}
T = {T1, T2, ..., Ty}
G = (V,E) with

V = {s, t} ∪ F ∪ T

E = {(s, v)|v ∈ F} ∪ {(u, v)|u ∈ F, v ∈ T} ∪ {(v, t)|v ∈ T}

where the capacities are like follows:

c(s, v) = ni if v = Fi

c(u, v) = 1 if u ∈ F, v ∈ T

c(v, t) = ri if v = Ti

s t

F1

F2

F3

F4

F5

T1

T2

T3

T4

F T

1

n1

n2

n3

n4

n
5

r
1

r2

r3

r4

