
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory
Sample Solution Exercise Sheet 11

Due: Friday, 17th of January 2025, 10:00 am

Exercise 1: Balls into Bins (10 Points)

Assume we have n bins and n balls (for n ≥ 2). We now throw all the balls uniformly at random
into the bins. In the following we want to show that the maximum number of balls per bin is at
most O(log n) with high probability. For that we define the maximum load L by max1≤j≤n Yj where
(random variable) Yj stands for the number of balls in bin j.

(a) For a given bin j, what is the expected number of balls in j? (i.e., compute E[Yj]) (2 Points)

(b) Use a Chernoff Bound to show that P (Yj ≥ 2e · log2 n) ≤ 1/n2e. (6 Points)
Chernoff Bound: Suppose X1, X2, . . . , XN are independent random variables taking values in
{0, 1}. Let X denote

∑N
i=1Xi and let µ = E[X] be this sums expected value. Then for any δ > 0,

P (X ≥ (1 + δ) · µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ
(c) Show that the maximum load L is small, i.e., show that P (L < 2e · log2 n) > 1− 1

n4 . Use a Union
Bound! (2 Points)

Sample Solution

a) Let Xi for 1 ≤ i ≤ n be the random variable that is 1 if ball i was thrown in bin j and else is 0. By
our assumptions we have that for a given j all Xi are independent and P (Xi = 1) = 1/n. Thus,

E[Yj] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] =
n∑
i=1

(0 · P (Xi = 0) + 1 · P (Xi = 1)) =
n∑
i=1

1

n
= 1

b) By the previous task we know that µ = E[Yj] = 1. Also note that by the assumption that n ≥ 2
we have that log2 n ≥ 1. We can now proof the statement by choosing δ = 2e · log2 n− 1:

P (Yj ≥ 2e · log2 n) = P (Yj ≥ (1 + 2e · log2 n− 1︸ ︷︷ ︸
δ

) · µ)

≤
(

e−1 · e2e·log2 n

(2e · log2 n)2e·log2 n

)1

=
1

e
·
(

e

2e · log2 n

)2e·log2 n

≤
(

1

2

)2e·log2 n
=

1

2log2(n
2e)

=
1

n2e

c) If there is some j s.t. Yj ≥ 2e · log2 n, the maximum load conflicts the statement of the task. We
will use a union bound to estimate the probability that there exists such a j:

P (L ≥ 2e · log2 n) = P

 n∨
j=1

(Yj ≥ 2e · log2 n)

 ≤ n∑
j=1

P (Yj ≥ 2e · log2 n) ≤ n · 1/n2e = 1/n2e−1 ≤ 1/n4

Exercise 2: Max Cut (10 Points)

Let G = (V,E) be a simple undirected graph. Consider the following randomized algorithm: Every
node v ∈ V joins set S with probability 1/2. You can assume that (S, V \S) actually forms a cut i.e.,
∅ 6= S 6= V .

(a) Show that with probability at least 1/3 this algorithm outputs a cut which is a 4-approximation
to the maximum cut (i.e., the cut of maximum possible size) (5 Points)
Hint: Apply the Markov inequality to the number of edges that do not cross the cut. For a
non-negative random variable X, the Markov inequality states that for all t > 0 we have

P (X ≥ t) ≤ E[X]

t

(b) How can you use the above’s algorithm to devise a 4-approximation with probability at least

1−
(
2
3

)k
for any integer k > 0? (4 Points)

(c) How would you choose k from the previous subtask to make sure your algorithm computes a
4-approximation with high probability1 ? (1 Point)

Sample Solution

(a) Let X be random variable that indicates the number of edges that do not cross the cut and let
n = |V | and m = |E|. Further, let

Xe :=

{
1 e is not crossing the cut

0 otherwise

Since the endpoints of en edge join the cut independently with probability 1/2, the probability
that the end points are in the same cut is also 1/2 and hence P (Xe = 1) = 1/2. Further, note
that E[Xe] = 0 · P (Xe = 0) + 1 · P (Xe = 1) = P (Xe = 1).

E[X] = E

[∑
e∈E

Xe

]
=
∑
e∈E

E[Xe] =
∑
e∈E

P (Xe = 1) =
1

2
·
∑
e∈E

1 =
m

2

Hence, by the Markov inequality

P

(
X ≥ 3m

4

)
≤ E[X]

3m/4
=

4m

6m
=

2

3

Let Y be the number of edges that cross the cut. Note that every edge either contributes to X or
to Y , thus, m = X + Y . It is easy to see that an upper bound on the number of edges that cross
the cut is m. This implies that even the max-cut is of size at most m. We denote the size of the
max-cut by OPT .

P (Y > OPT/4) ≥ P (Y > m/4) = P (m−X > m/4) = P (X < 3m/4) = 1− P (X ≥ 3m/4) ≥ 1

3

Hence, the size of the cut (S, V \S) is a 4-approximation to the max cut with probability at least
1/3.

(b) The guarantee a 4-approximation to the max-cut with prob. at least 1− (2/3)k we use the above’s
algorithm as a ’blackbox’, run it k times and output the largest of the k cuts. By the above’s
analysis, a single pass fails with prob. at most 2/3 to archive a 4-approximation. Hence, the
probability that all k runs fail is (2/3)k. In other words, the probability that at least one of the
constructed cuts is a 4-approximation to the max-cut is at least 1− (2/3)k.

1We use the term with high probability in the context of graphs with n nodes and for any given constant c > 0 if
the algorithms succeeds with probability at least 1− 1

nc .

(c) If we choose k = dc · log3/2 ne, the algorithm will output a 4-approximation with high probability

since we have success probability of ≥ 1−(2/3)k = 1−(2/3)dlog3/2 n
ce ≥ 1−(2/3)log3/2 n

c

= 1−1/nc.

