
University of Freiburg
Dept. of Computer Science
Prof. Dr. F. Kuhn
S. Faour, M. Fuchs, A. Malyusz

Algorithm Theory

Sample Solution Exercise Sheet 12
Due: Friday, 24th of January, 2025, 10:00 am

Exercise 1: Hidden numbers (8 Points)

(a) You are given a uniform random permutation of the numbers of 1, . . . , n. Prove that if we run the
following algorithm

Algorithm 1 Finding the Maximum Element in a Permutation

Require: A uniform random permutation A[1 . . . n] of the numbers 1, . . . , n.
Ensure: The maximum element in A.
1: maxSoFar← A[1] . Initialize the maximum element as the first element
2: for i← 2 to n do . Iterate through the array starting from the second element
3: if A[i] > maxSoFar then
4: maxSoFar← A[i] . Update the maximum element

5: return maxSoFar . The maximum element in A

the maxSoFar value will, in expectation, be updated (line 4) at most Hn times where Hn is the
n-th harmonic number defined by Hn :=

∑n
i=1 1/i. (4 Points)

Hint: Define

Xi :=

{
1 if A[i] is larger than all values in the prefix A[1, ..., i− 1]

0 else

and think about its expected value and how can you use it for this task?

There are n hidden integers ai, each of them belonging to the range [1, d]. In a single query, you may
choose two integers x and y (1 ≤ x ≤ n, 1 ≤ y ≤ d) and ask the following question:

“Is ax ≥ y?”

Your goal is to determine the value of the largest element in the hidden array.

(b) Give a (deterministic) algorithm that finds the largest element in the array using O(n · log2 d)
queries. (1 Point)

(c) In this task we want to improve the query complexity. Your objective is to modify the algorithm
from b) such that, in expectation, at most O

(
n + lnn · log2 d

)
queries are needed to find the

maximum element. The algorithm itself should still be deterministic! (3 Points)
Hint: Use the result of task a) and the fact that Hn ≤ 1 + lnn.

Sample Solution

(a) By the definition in the hint we have E[Xi] = P (Xi = 1) = 1
i . The overall number of updates

X of maxSoFar is
∑n

i=2Xi as we only have update if A[i] is larger than all values in the prefix.
Using the linearity of expectation we get E[X] =

∑n
i=2E[Xi] =

∑n
i=2

1
i ≤ Hn.

(b) We can find the value of a1 using binary search over all potential values in time O(log2 d). If we
do that simply for each of the n many ai, we will get all values, and hence the max value in time
O(n log d).

(c) The idea is to use the binary search from the previous task in fewer cases. Indeed, as we know
our current max value, we can, when considering the next ai ask if ai ≥ maxSoFar. If this is not
true, we can proceed with ai+1. If it is true we will use the binary search to compute the exact
value of ai. By task a), in expectation there are at most 1 + lnn entries where we have to apply
the binary search. Thus, the number of queries is n+O(log d · log n) in expectation.

Exercise 2: Randomized Coloring (12 Points)

Let G = (V,E) be a simple, undirected graph with maximum degree ∆. A (node) coloring of the
graph is an assignment of colors to the nodes in a way that no two adjacent nodes are assigned with
the same color. More formal: A coloring is a mapping φ : V → C of nodes in V to some color space
C s.t. φ(u) 6= φ(v) if {u, v} ∈ E.
Consider Algorithm 2 to assign colors from the colors pace {1, 2, . . . ,∆ + 1} to the nodes. Let Lv be
the lists of available colors of v, that initially is set to the color space.

Algorithm 2 Randomized Coloring

Ensure: φ is a proper ∆ + 1 coloring
1: Let Lv := {1, 2, . . . ,∆ + 1}
2: for each uncolored node v ∈ V in parallel do
3: v becomes active with probability p = 1

2
4: if v is active then
5: Let v choose a color xv ∈ Lv uniformly at random
6: if no neighbor u picked xv as well then
7: φ(v) := xv . v is colored now!

8: if v is still uncolored then
9: delete φ(u) from Lv for all colored neighbors u. . Update Lv

Note that in every iteration, |Lv| is larger than the number of uncolored neighbors of v.

(a) Show that a node v that is still uncolored will be colored in the next iteration with probability at
least 1/4. (6 Points)
Hint: Assume v is active and has k uncolored neighbors. What is the probability that v gets
colored?

(b) After how many iterations is a node v ∈ V colored in expectation? (2 Points)

(c) Show that Algorithm 2 terminates in O(log n) iterations with high probability.
That is for a given constant c > 0, all nodes are colored within O(log n) iterations with probability
at least 1− 1

nc . (4 Points)
Hint: Use the result of a) for tasks b) and c) even if you didn’t manage to come up with a solution.

Sample Solution

(a) Fix an uncolored node v and assume v is active and has k uncolored neighbors. The probability
that some neighbor u is active is p. Let u decides on a color xu, the probability that v decides
on the same color xu = xv is 1/|Lv| (since a color from Lv is chosen uniformly at random).
Note hat by construction |Lv| ≥ k + 1. It follows that v and u are in conflict with probability
p

|Lv | ≤ p/(k + 1). Hence, the probability that v is in conflict with at least one of the k neighbors

is by the union bound at most p · k
k+1 ≤ p. Thus, v is not in conflict with any neighbor with

probability at least (1− p).

Since any node v will be colored in the current iteration if it is active and not in conflict with any
neighbor, this happens with probability at least p · (1− p) = 1/4.

(b) Let Xv be the random variable indicating the iteration 1 ≤ i when v successfully decides on a
color. Let Z be the geometrical distribution with success probability 1/4. By task a) we know
that the success probability for a node v to get colored is ≥ 1/4, hence, we have E[Xv] ≤ E[Z].
As the expected value of any geometrical distribution is the reciprocal of the success probability
we have E[Xv] ≤ E[Z] = 4.

(c) By a), we have that v is not colored within the first i iterations with probability at most (3/4)i.
Hence, by the union bound there exist at least one uncolored node after i iterations with probability
n·(3/4)i. Contrarily, the algorithm terminates in i iterations with probability at least 1−n·(3/4)i.
Choosing i = (c + 1) log4/3(n), we get the desired high probability bound through the following
arithmetic:

P (Termination after (c+ 1) log4/3(n) iterations) ≥ 1− n · (3/4)log4/3(n
c+1) = 1− n

nc+1
= 1− 1/nc

