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Exercise 1: Generalized Contraction (5 Points)

Let G = (V, E,w) be a weighted graph s.t. w: F — RT. A cut (4, B) is a partition of V such that
V=AUB, ANB =, and A, B # (). We define the weight of the cut (A, B) to be the total edge
weight crossing the cut.

Devise an algorithm that runs in O(n*logn) rounds and returns a minimum weighted cut w.h.p.
Argue its correcntess and running time.

Sample Solution

Let C C E, define w(C) := " cow(e). Let C be a cut in G, we will abuse the notation and define
the weight of the cut to be w(C) := > .- w(e), (i.e. as if we are considering cut C to be the set of
edges of the actual cut).

We will run the same contraction algorithm from the lecture but with a (generalized) sampling
probability that takes the weights of the edges into account i.e. the probability of contracting edge e

in graph G = (V, E) will be Zw()<) Now for the correctness, we can prove the same theorem as
ecE WIE

in the lecture i.e. the probability that this new generalized contraction algorithm outputs a specific
minimum cut is at least nn%l And from there on all the correctness analysis is the same as in the
lecture. Indeed, the whole analysis of that of the lecture can be also generalized to consider this new
sampling probability and eventually prove that same theorem, the only point to notice is that if the
weight of the minimum weight cut of a weighted multigraph G (no self-loops) is k, then for every node
the total weight of all edges incident to that node must be at least k.

Finally for the running time, everything is the same as well as the implementation step of sampling a
random edge which will also take O(n?), but one has to pay attention to use weights instead of degrees
there (i.e. one has to generalize this implementation step also).

Note (someone had this remark in the tutorial): yes, for edge weight values in N, we can reduce the
problem of finding a minimum weighted cut on simple edge wighted graphs to the problem of finding
the minimum cut on (unweighted) mutigraphs. Indeed, given a simple graph G with edge weights in
N, we construct a new graph G’ with the same node set and for the edges we allow multiple edges
s.t. each edge e = {u,v} in G is now split into w(e) € N many edges connecting v and v in G'. Now,
notice that if C' is a min cut on the multigraph graph G’ (which is constructed from G), then C is
also a min weighted cut in G. Else, there would exist a cut ¢’ in G s.t. w(C") < w(C), and thus in
G’ this C" will be also be a cut of size smaller than that of C, which is a contradiction. Thus to find
the minimum weighted cut of any weighted simple graph G, it is enough to run the same contraction
algorithm in the lecture on its corresponding mutigraph G’ (as defined above) and find its minimum
cut.



Exercise 2: Modified Contraction (6 Points)

Let’s modify the contraction algorithm from the lecture in the following way: Instead of contracting
a uniform random edge, we choose a uniform random pair of remaining nodes in each step and merge
them. That is, as long as there are more than two nodes remaining, we choose two nodes u # v
uniformly at random and replace them by a new node w. For all edges {u,x} and {v,x} we add an
edge {w,x} and remove self-loops created at w.

(a) Give an example graph of size at least n where the above algorithm does not work well, that
is, where the probability of finding a minimum cut is exponentially small in n (show that in the
second part). (2 Points)

(b) Show that for your example the modified contraction algorithm has probability of finding a
minimum cut at most a” for some constant a < 1. (4 Points)

Sample Solution

(a,b) This algorithm is not efficient. Let (A, B) be a minimum cut. For the edge contraction algorithm
we know that it outputs (A4, B) if and only if it never contracts an edge crossing (A, B) (chapter
7, part V, slide 8). If the there are k crossing edges, we know that there are Q(k - n) edges in
the graph and hence the probability to choose a crossing edge is O(1/n) (in the first contraction
step). In contrast, for the “node contraction” algorithm, it holds that it outputs (A, B) if it
never contracts a “crossing pair”, i.e., a pair of nodes {a,b} with a € A, b € B, regardless
whether there is an edge between a and b. The total number of node pairs is (5) = Q(n?),
but the number of crossing pairs can be Q(n?) as well, leading to a constant probability that a
crossing pair is chosen.

To formalize this argument, consider the following graph: Let n be even. There are two cliques
(= graph with an edge between each pair of nodes) of size n/2 and a single edge between these
cliques, i.e., an edge {u, v} such that u is in the one clique and v in the other, and no more edges
between the cliques exist.

So there is a unique minimum cut and we show that the probability that the node contraction
algorithm chooses this cut is exponentially small. We only consider the first /5 rounds. In these
rounds, there are at least 4n/5 nodes in the graph, i.e., there are (4”2/ 5) pair of nodes. In order
for the minimum cut to survive, the two chosen nodes must be within the same clique. Each
clique has size at most ("42) nodes, i.e., there are at most 2(”42) pairs for which the minimum

cut would survive. This yields a probability of at most
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(%): For n > 20 we have ¢ > 4 and hence 1%” —4> IE’T"

It follows that the probability that the minimum cut survives the first n/5 rounds is less than
(%)n/5 = a" with a = (%)1/5 < 1, i.e., exponentially small.

Exercise 3: Graph Connectivity (9 Points)

Let G=(V, E) be a graph with n nodes and edge connectivity! \ > 1661# (where 0<e<1). Now every
edge of G is removed with probability 1. We want to show that the resulting graph G'=(V, E’) has
connectivity A > %(1—5) with probability at least 1— % This exercise will guide you to this result.

Remark: If you don’t succeed in a step you can use the result as a black box for the next step.

!The connectivity of a graph is the size of the smallest cut (S,V\S) in G.



(a) Assume you have a cut of G with size k> \. Show that the probability that the same cut in G’

2
has size strictly smaller than £(1—¢) is at most e T (2 Points)

(b) Let k> X\ be fixed. Show that the probability that at least one cut of G with size k becomes a cut
52
of size strictly smaller than £(1—¢) in G’ is at most e 5
Hint: You can use that for every o > 1, the number of cuts of size at most a\ is at most n>®.
(8 Points)
(c) Show that for large n the probability that at least one cut of G with any size k > A becomes a cut
of size strictly smaller than £(1—¢) in G’, is at most 1

Hint: Use another union bound. (4 Points)

Sample Solution

(a) Let C' be the edges of a cut of size k. For e € C' let X, =1 if e € G’ and else X, = 0. Let
X =) .ccXe. The expectation is E[X] = > - E[X.] = % We use a Chernoff bound

Pr (X <E[X](1—¢)) < exp (—62]2[)(]> = exp (—?)

(b) According to the hint we have at most nx many cuts of size k. For an arbitrary cut of C of size
klet C' := C' N E’. With a union bound we obtain

pr( (10l < 2(1—5))) <Y e < 5(1—5)) (umion bound)
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(c) For brevity let £(k) (for k> ) be the event Uc cut (|C7| < E(1—¢)) (recall C":= CNG’). Then a
|C|=k

solution with a geometric series which holds for large n

O(n?)

Pr ( U g(k)) < Pr <G g(k)) < i Pr (g(k)) (%) io: exp (—€2k> (geometric series)
k=X k=X k=X k=X 8
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fraction <1 for large n



