

(10 Points)

(10 Points)

Algorithm Theory Sample Solution Exercise Sheet 14

Due: Friday, 7th of February, 2025, 10:00 am

Exercise 1: Prof. Jot

Suppose you are given a list of N integers $L = [a_1, a_2, ..., a_N]$, a_i are positive numbers, and a positive integer C. The problem is to find a subset $S \subseteq \{1, 2, ..., N\}$ such that

$$T(S) = \sum_{i \in S} a_i \le C,$$

and T(S) is as large as possible.

(a)

Prof. Jot proposes the following greedy algorithm for obtaining an approximate solution to this maximization problem:

 Algorithm 1 Greedy Algorithm for Bounded Set Sum

 Require: List of integers $[a_1, \ldots, a_N]$, capacity C

 Ensure: A subset S such that T(S) is maximized under the constraint $T(S) \leq C$

 1: $S \leftarrow \emptyset, T \leftarrow 0$

 2: for i = 1 to N do

 3: if $T + a_i \leq C$ then

 4: $S \leftarrow S \cup \{i\}$

 5: $T \leftarrow T + a_i$

 6: return S

Show that Prof. Jot's algorithm is not a ρ -approximation algorithm for any fixed value ρ . (Use the convention that $\rho > 1$.)

(b)

Describe a 2-approximation algorithm for this maximization problem that runs in $O(N \log N)$ time.

Sample Solution

Solution

Exercise 2: Miscellaneous Approximations

Let G = (V, E) be an undirected connected graph. A set $D \subseteq V$ is called a *dominating set* if each node in V is either contained in D or adjacent to a node in D.

We consider the following randomized algorithm for d-regular graphs (i.e., graphs in which each node has exactly d neighbors).

Algorithm 2 domset(G)

- 1: $D \leftarrow \emptyset$
- 2: Each node joins D independently with probability $p \leftarrow \min\{1, \frac{c \cdot \ln n}{d+1}\}$ for some constant $c \ge 1$
- 3: Each node that is neither in D nor has a neighbor in D joins D
- 4: return D
- (a) The minimum dominating set problem asks to find a dominating set $D \subseteq V$ of minimum size. Show that for $c \geq 2$, the domset algorithm computes an $\mathcal{O}(\ln n)$ -approximation of a minimum dominating set with probability at least $1 - \frac{2}{n}$. (3 Points)
- (b) 1. An *independent set* is a set $I \subseteq V$ such that no two nodes in I share an edge in E. The maximum independent set problem asks to find an independent set of maximum size. Recall that the minimum vertex cover problem asks to find a vertex cover of minimum size. Now, show that both optimization problems are equivalent i.e. finding the minimum-size vertex cover is equivalent to finding the maximum-size independent set . (2 Points)
 - 2. Show that the two problems are not equivalent in an approximation-preserving way, i.e it is not true that for all positive integer α , finding an α -approximate minimum vertex cover is equivalent to finding a α -approximate maximum independent set.

Hint: Give a counterexample by finding a family of graphs where one can easily obtain a 2approximate minimum vertex cover, but this will equivalently find a very bad approximate maximum independent set. (5 Points)

Sample Solution

• For every $v \in V$:

$$Pr(v \in D) = Pr(v \text{ joins } D \text{ in line } 2) + Pr(v \text{ joins } D \text{ in line } 3)$$
$$= \frac{c \ln n}{d+1} + \left(1 - \frac{c \ln n}{d+1}\right)^{d+1}$$
$$\leq \frac{\ln n}{d+1} + e^{-c \ln n}$$
$$= \frac{c \ln n}{d+1} + \frac{1}{n^c}.$$

We obtain:

$$E[|D|] \le n \cdot \left(\frac{c\ln n}{d+1} + \frac{1}{n^c}\right) = \frac{c \cdot n\ln n}{d+1} + \frac{1}{n^{c-1}} \le \frac{c \cdot n\ln n}{d+1} + 1.$$

• For each node v, let X_v be a random variable with $X_v = 1$ if v joins D in line 2 and $X_v = 0$ otherwise. Let $X = \sum X_v$. We have $\Pr(X_v = 1) = \frac{c \cdot \ln n}{d+1}$ and hence $\mu = E[X] = \frac{cn \cdot \ln n}{d+1}$. For $\delta = 3$, we obtain:

$$\Pr(X \ge (1+3)\mu) \le e^{-\mu} = e^{-\frac{cn\ln n}{d+1}} \le e^{-c\ln n} = \frac{1}{n^c} \le \frac{1}{n}$$

Thus, with probability at least $1 - \frac{1}{n}$, we have $|D| \le 4\mu = O\left(\frac{n \ln n}{d}\right)$.

• For every $v \in V$,

$$\Pr(v \in D \text{ in line } 3) = (1-p)(1-p)^d \le e^{-c\ln n} = \frac{1}{n^c}$$

Moreover,

$$\Pr\left(\bigcup_{v \in V} v \in D \text{ in line } 3\right) \le \sum_{v \in V} \Pr(v \in D \text{ in line } 3) \le \frac{n}{n^c} \le \frac{1}{n}, \quad \text{for } c \ge 2.$$

Thus, with probability at least $1 - \frac{1}{n}$, no node joins D in line 3.

• In general, let A, B be two events such that $A \subseteq B$. Then, $\Pr(A) \leq \Pr(B)$. Hence,

Pr (domset returns a dominating set of size $O\left(\frac{n \ln n}{d+1}\right)$ at the end of its execution)

 $\geq \Pr\left(\texttt{domset} \text{ returns a dominating set of size } O\left(\frac{n \ln n}{d+1}\right) \text{ at the end of line 2}\right)$

- Define the events B_1 and B_2 as follows:
 - B_1 : Too many nodes are selected in line 2.
 - B_2 : Any additional node is added in line 3.

By the union bound,

$$\Pr(B_1 \cup B_2) \le \Pr(B_1) + \Pr(B_2) = \frac{2}{n}.$$

Hence, the probability that everything proceeds correctly is given by

$$\Pr(B_1^c \cap B_2^c) = 1 - \Pr(B_1 \cup B_2) \ge 1 - \frac{2}{n}$$

- Notice that each node in a minimum dominating set covers at most d+1 nodes. Thus, one can deduce that $OPT \cdot (d+1) \ge n$, where OPT is the size of a minimum dominating set. This is sufficient to establish the desired result.
- 1. One can prove that the statement is true by taking the complement of the result, i.e., the set of vertices is a vertex cover if and only if its complement is an independent set.
- 2. Consider a complete bipartite graph $K_{n,n}$. One can show that, on one hand, all the nodes make up a 2-approximation to the minimum vertex cover problem. However, the complement graph, which is the empty graph of size 0, is far from being a 2-approximation of the maximum independent set problem. (One can show that a maximum independent set is of size n.)