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Exercise 1: Ticket Problem (10 Bonus Points)

A student from Freiburg is doing a one-year internship in Berlin, hence he will have to commute
between the two cities. A train ticket from Freiburg to Berlin as well as from Berlin to Freiburg
costs p0 > 0 Euros. However, to save money there is a special ticket called ’RailCard50’ that is valid
for the whole year and allows buying train tickets for half of the price. The RailCard50 itself costs
p1 = 10 ·p0 Euros. Consider this problem as an online problem, where the number of train rides x ≥ 1
between these cities during the year is not known beforehand. So before each trip, if not bought yet,
the student must make a decision on whether or not to buy the RailCard50.

(a) Describe the best offline strategy OPT (x is known beforehand) and give the costs as function
depending on x. (2 Points)

(b) Assume the student decides on the online strategy ALG1 (x is unknown), that is to buy the
RailCard50 before the first train ride. Give an upper bound on the strict competitive ratio of
ALG1. (3 Points)

(c) Give an online strategy ALG2 that is strictly 3
2 -competitive and prove it. (5 Points)

Sample Solution

(a) The best offline strategy is either buying the RailCard50 before the first ride or never buying a
RailCard50. Hence,
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{
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(b) Buying the RailCard50 on the first day, leads to the following cost ALG1 = p1 + x · p0/2 =
p0(10 + x/2). Since we have OPT ≥ p0 · x, we get
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x
+

1

2
≤ 11

(c) The online strategy ALG2 works as follows: For the first 20 rides, the student does not buy the
RailCard50. If there is a 21st ride, the student will buy the RailCard50. We thus have

• If x ≤ 20: ALG2 = p0 · x = OPT .

• If x > 20: ALG2 = 20 · p0 + p1 + (x− 20) · p0/2 = p0 · (20 + x/2), thus:
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Combining both cases leads to the desired competitive ratio.



Exercise 2: Online Bin Packing (10 Bonus Points)

The Online Bin Packing problem is a variant of the Knapsack problem. Here we are given an unlimited
number of bins, each with capacity 1. We get a sequence of items x1, x2, ..., in online fashion and are
required to place them into the bins as we receive them (once placed we are not allowed to put an
item into another bin). Each item xi comes with an individual weight 0 < wi ≤ 1. The goal is to
minimize the number of used bins under the constraint that the sum of the weights of the items in
one bin do not exceed its capacity.
In this task we consider the First-Fit (FF) online strategy: FF fixes the order of bins arbitrarily
w.l.o.g. say b1, b2, ..., and places each item into the first bin (i.e., the bin with the smallest index) that
has enough capacity left to hold the item.

(a) Show that FF is strictly 2-competitive. (7 Points)
Hint: Let Ci be the total weight of items in bin bi. First show that for any given pair of bins bi
and bj with 1 ≤ i < j containing at least one element it is true that Ci + Cj > 1.

(b) Give a sequence of items for which the strictly competitive ratio of FF is no better than 3
2 .

(3 Points)

Sample Solution

(a) Let Ci be the total weight of items in bin bi. We now show the helpful statement of the hint is
true, i.e., ∀ 1 ≤ i < j we have Ci + Cj > 1. For contradiction assume this is not true. Then there
is a pair i < j such that Ci + Cj ≤ 1. Let x be the last item added to bj with weight wx. Due to
construction, x didn’t fit into Ci and hence Ci > 1−wx and as x was put into bj we clearly have
Cj ≥ wx. Thus, combining these two we get Ci + Cj > (1− wx) + wx = 1. Contradiction.
We are now ready to show the actual statement:
Assume FF uses m bins and for each pair of bins (bi, bj) with i 6= j we have Ci + Cj > 1 (from
the hint). Thus, we can create bm/2c disjoint pairs of bins with a total weight of > bm/2c. Since
even the optimal solution can not do better than filling each bucket with weight 1, we have that
OPT > bm/2c and as OPT has to be an integer we can also say OPT ≥ dm/2e. The statement
of the task follows by FF/OPT ≤ m/dm/2e ≤ 2.

Alternative Proof: W.l.o.g. we say that FF uses m > 1 bins (If m = 1 the algorithm is anyway
optimal). From the hint we have
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Also note that the optimal solution will take OPT ≥
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OPT ≥
m∑
i=1

Ci =
1

2(m− 1)

m∑
k=1

m∑
i=1
i 6=k

(Ci + Ck) >
m(m− 1)

2(m− 1)
=

m

2
=

FF

2

It therefore follows a 2-competitive ratio.

(b) Consider an instance where 4n items arrive in online fashion. The first 2n items have weight 0.4
and the last 2n items have weight 0.6. Clearly the optimal solution will use OPT = 2n bins. FF
on the other side will put the first 2n items in n bins. Since the remaining 2n items do not fit in
the previous used bins, FF needs an additional 2n bins for them. Hence, for this instance we have
FF/OPT = 3/2.


