
Near-Optimal Distributed Maximum Flow

Extended Abstract

Mohsen Ghaffari
Massachusetts Institute of Technology

02139 Cambridge, USA
ghaffari@csail.mit.edu

Andreas Karrenbauer
∗

MPI for Informatics
66123 Saarbrücken, Germany
karrenba@mpi-inf.mpg.de

Fabian Kuhn
University of Freiburg

79110 Freiburg, Germany
kuhn@cs.uni-freiburg.de

Christoph Lenzen
MPI for Informatics

66123 Saarbrücken, Germany
clenzen@mpi-inf.mpg.de

Boaz Patt-Shamir
†

Tel Aviv University
Tel Aviv 6997801, Israel

boaz@tau.ac.il

ABSTRACT
We present a near-optimal distributed algorithm for (1 +
o(1))-approximation of single-commodity maximum flow in

undirected weighted networks that runs in (D +
√
n) · no(1)

communication rounds in the CONGEST model. Here, n and
D denote the number of nodes and the network diameter,
respectively. This is the first improvement over the trivial
O(m) time bound, and it nearly matches the Ω̃(D +

√
n)

round complexity lower bound.

The development of the algorithm contains two results of
independent interest:

(i) A (D+
√
n) ·no(1)-round distributed construction of a

spanning tree of average stretch no(1).
(ii) A (D +

√
n) · no(1)-round distributed construction of

an no(1)-congestion approximator consisting of the cuts
induced by O(logn) virtual trees. The distributed rep-
resentation of the cut approximator allows for evalua-
tion in (D +

√
n) · no(1) rounds.

All our algorithms make use of randomization and succeed
with high probability.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Network
Problems; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Non-numerical Algorithms and Problems—
Computations on Discrete Structures

∗Supported by the Max Planck Center for Visual Computing
and Communication (www.mpc-vcc.org).
†Supported in part by the Israel Science Foundation (grant
no. 1444/14) and by a grant from the Israel Ministry of
Science, Technology and Space.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3617-8 /15/07 ...$15.00.
http://dx.doi.org/10.1145/2767386.2767440.

1. INTRODUCTION
Computing a maximum flow is a fundamental task in net-

work optimization. While the problem has a decades-old
history rich with developments and improvements in the se-
quential setting, little is known in the distributed setting.
In fact, prior to this work, the best known distributed time
complexity in the standard CONGEST model remained at
the trivial bound of O(m), i.e., the time to collect the en-
tire topology and solve locally. This paper improves this
unsatisfying state to near-optimality:

Theorem 1.1. On undirected weighted graphs, a (1 + ε)-
approximation of a maximum s-t flow can be computed in
(D +

√
n) · no(1)ε−3 rounds of the CONGEST model with

high probability.

This round complexity almost matches the Ω̃(D+
√
n) lower

bound of Das Sarma et al. [?], which holds for any non-trivial
approximation.

1.1 Related Work
Network flow, being one of the canonical and most useful

optimization problems, has been the target of innumerable
research efforts since the 1930s [?] (see, e.g., the classic
book [?] and the recent survey [?]). However, to the dis-
may of many, and despite the fact that the word “network”
even appears in the problem’s name, only little progress was
made over the years from the standpoint of distributed al-
gorithms. For example, Goldberg and Tarjan’s push-relabel
algorithm, which is very local and simple to implement in
the CONGEST model, requires Ω(n2) rounds to converge,
where n is the number of nodes. This is very disappointing,
because in the CONGEST model, any problem whose input
and output can be encoded with O(logn) bits per edge, can
be trivially solved in O(m) rounds, where m is the number
of edges, by collecting all input at a single node, solving it
there, and distributing the results back.

Early attempts focused, as customary in those days, on
reducing the number of messages in asynchronous execu-
tions. For example, Segall [?] gives an O(nm2)-messages,
O(n2m)-time algorithm for exact max flow, and Gafni and
Marberg [?] give an an algorithm whose message and time

complexities are O(n2m1/2). Awerbuch has attacked the
problem repeatedly with the following results. In an early
work [?] he adapts Dinic’s centralized algorithm using a

synchronizer, giving rise to an algorithm whose time and
message complexities are O(n3). With Leighton, in [?] they
give an algorithm for solving multicommodity flow approxi-
mately in O(`m logm) rounds, where ` < n is the length of
the longest flow path. Later he considers the model where
each flow path (variable) has an “agent” which can find the
congestion of all links on its path in constant time. In this
model, he shows with Khandekar [?] how to approximate
any positive LP (max flow with given routes included) to
within (1 − ε) in time polynomial in log(mnAmax/ε) (here
n is the number of variables, which is at least the number
of paths considered). The same model is used with Khan-
dekar and Rao in [?], where they show how to approximate
multicommodity flow to within (1− ε) in O(` logn) rounds.
Using a straightforward implementation of this algorithm in
the CONGEST model results in running time Õ(n2).

Thus, up to the current paper, there was no distributed
implementation of a max-flow algorithm which always re-
quires subquadratic number of rounds. Even an O(n)-time
algorithm would have been considered a significant improve-
ment, even for the 0/1 capacity case.

1.2 The Model
We use the standard CONGEST model of synchronous

computation [?]. We are given a connected, weighted graph
G = (V,E, cap), where cap : E → N, cap(e) ∈ polyn, are
the edge capacities.1 By D, we denote the (hop) diameter
of G. Each of the n := |V | nodes hosts a processor with
a unique identifier of O(logn) bits, and over each of the
m := |E| edges O(logn) bits can be sent in each synchronous
round of communication. We assume that nodes have access
to infinite strings of independent unbiased random bits. We
say that an event occurs with high probability (w.h.p.), if it
happens with probability 1 − n−c for any desired constant
c > 0 specified upfront.2 Initially, each node only knows its
identifier, its incident edges, and their capacities.

1.3 The Problem
We fix an arbitrary orientation of the edges. In the follow-

ing, we write (u, v) ∈ E if {u, v} ∈ E is directed from u to
v. An instance of the (single-commodity) max flow problem
is given by, in addition to specifying G, designating a source
s ∈ V and a sink t ∈ V . A (feasible) flow of value F ∈ R is
a vector f ∈ RE satisfying:

1. capacity constraints (edges): ∀e ∈ E : |fe| ≤ cap(e) ;
2. conservation constraints (nodes):

∀v ∈ V \ {s, t} :
∑

(u,v)∈E

fe −
∑

(v,u)∈E

fe = 0; and

3. value constraints (at source and sink):∑
(s,u)∈E

fe −
∑

(u,s)∈E

fe =
∑

(u,t)∈E

fe −
∑

(t,u)∈E

fe = F.

A max flow is a flow of maximum value. For ε > 0, a (1+ε)-
approximate max flow is a flow whose value is at most factor

1As merely an approximate flow is required, we can reduce
the general case to this setting in Õ((

√
n+D) logC) rounds,

where C is an upper bound on the ratio between the largest
and smallest capacity.
2Taking the union bound over polynomially many events
does not affect this property. We will use this fact frequently
and implicitly throughout the paper.

1+ε smaller than that of a max flow. In this work, we focus
on solving the problem of finding a (1+ε)-approximate max
flow in the above model, where it suffices that each node u
learns fe for its incident edges e = {u, v} ∈ E.

1.4 Organization of this Article
Our result builds heavily on a few major breakthroughs

in the understanding of max flow in the centralized setting,
most notably [?], as well as a few other contributions. Due
to lack of space, we focus on the presentation of the key
concepts relevant to our results, along with credit, in the
main body of the paper.

We start by carefully revisiting Sherman’s approach [?]
and the main building blocks he relies on in Section ??. This
sets the stage for shedding light on the challenges that must
be overcome for its distributed implementation and presen-
tation of our results in Section ??. There, we also provide a
top-level view of the components of the algorithm; for lack of
space, complete proofs are deferred to the full version of the
paper. Finally, in Section ??, we outline the distributed con-
struction of an no(1)-congestion approximator, which is our
key technical contribution; the role of a congestion approx-
imator is to estimate the congestion induced by optimally
routing an arbitrary demand vector very quickly, which lies
at the heart of the algorithm.

2. OVERVIEW OF THE CENTRALIZED
FRAMEWORK

Sherman’s approach [?] is based on gradient descent (see,
e.g., [?]) for congestion minimization with a clever dual-
ization of the flow conservation constraints. The flow prob-
lem is re-formulated as a demand vector b ∈ Rn such that∑
i∈V bi = 0. In the case of the s-t flow problem, we have

a negative bs and positive bt with the same absolute value
and the demand is zero everywhere else. The objective is
to find a flow f∗ that meets the given demand vector, i.e.,
the total excess flow in node i is equal to bi, and minimizes
the maximum edge congestion, which is the ratio of the flow
over an edge to its capacity. Formally:

minimize
∥∥C−1f

∥∥
∞ subject to Bf = b , (1)

where C = (Cee′)e,e′∈E is an m×m diagonal matrix with

Cee′ =

{
cap(e) if e = e′

0 else ,

and B = (Bve)v∈V,e∈E is an n×m matrix with

Bve =

 1 if e = (u, v) for some u ∈ V
−1 if e = (v, u) for some u ∈ V
0 else .

Note that given a general (i.e., unconstrained) flow vector
f ∈ Rm, (Bf)v is exactly the excess flow at node v. Hence,
by the max-flow min-cut theorem, if we can solve prob-
lem (??), a simple binary search will find an approximate
max flow.

Instead of directly solving this constrained system, Sher-
man allows for general vectors and adds a penalty term for
any violation of flow constraints, i.e.,

minimize
∥∥C−1f

∥∥
∞ + 2α ‖R(b−Bf)‖∞ ,

where α ≥ 1 and the matrix R are chosen so that the op-
timum of this unconstrained optimization problem does not

violate the flow constraints. As we are interested in an ap-
proximate max flow, we can compute an approximate so-
lution and argue that the violation of the flow constraints
will be small, too. Then one simply re-routes the remaining
flow in a trivial manner, e.g., on a spanning tree, to obtain a
near-optimal solution. Finally, to ensure that the objective
function is differentiable (i.e., a gradient descent is actually
possible), ‖·‖∞ is replaced by the so-called soft-max.

2.1 The Congestion Approximator R

The congestion of an edge e (for a given flow f) is defined
as the ratio |fe|/cap(e). When referring to the congestion of
a cut in a given flow, we mean the ratio between the net flow
crossing the cut to the total capacity of the cut. Suppose
for a moment that α = 1 and R contains one row for each
cut of the graph, chosen such that each entry of the vector
RBf equals the congestion of the corresponding cut. In par-
ticular, R would correctly reproduce the congestion of min
cuts (which give rise to maximal congestion). Moreover, the
vector Rb describes the inevitable congestion of the cuts for
any feasible flow. Thus, the components of R(b − Bf) are
the residual congestions to be dealt with to make f feasible
(neglecting possible cancellations). The max-flow min-cut
theorem and the factor of 2 in the second term of the objec-
tive function imply that it always improves the value of the
objective function to route the demands arising from a vio-
lation of flow constraints optimally. Moreover, the gradient
descent concentrates on the most congested edges and those
that are contained in cuts with the top residual congestion.
In particular, flow is pushed over the edges into the cut with
the highest residual congestion to satisfy its demand until
other cuts become more important in the second part of
the objective. The first part of the objective impedes flow
on edges the more they are congested (on an absolute scale
and relative to others). Thus, approximately minimizing the
objective function is equivalent to simultaneously approxi-
mating the minimum congestion and having small violation
of flow constraints; solving up to polynomially small error
and naively resolving the remaining violations then yields
sufficiently accurate results.

Unfortunately, trying to make R capture congestion ex-
actly is far too inefficient. Instead, one uses an α-congestion
approximator, that is a matrix R such that for any demand
vector b, it holds that

‖Rb‖∞ ≤ opt(b) ≤ α ‖Rb‖∞ ,

where opt(b) is the maximum congestion caused on any cut
by optimally routing b. Since the second term in the objec-
tive function is scaled up by factor α, we are still guaranteed
that optimally routing any unsatisfied demands improves the
objective function. However, this implies that the second
term of the objective function may dominate its gradient
and thus emphasis is shifted rather to feasiblity than opti-
mality. Sherman proves that this slows down the gradient
descent by at most a factor of α2, i.e., if α ∈ no(1), so is the
number of iterations of the gradient descent algorithm that
need to be performed.

2.2 Congestion Approximators:
Räcke’s Construction

For any spanning tree T of G, deleting an edge partitions
the nodes into two connected components and thus induces
an (edge) cut of G. Note that on T , this cut contains only

the single deleted edge, and in terms of congestion any cut
of T is dominated by such an edge-induced cut: For any cut,
the maximum congestion of an edge is at least the average
congestion of the cut, and in T , there is a cut containing
only this edge.

These basic properties motivate the question of how well
the cut structure of an arbitrary graph can be approximated
by trees. Intuitively, the goal is to find a tree T (not nec-
essarily a subgraph) spanning all nodes with edge weights
such that routing any demand vector in G and in T results
in roughly the same maximal congestion. Because routing
flows on trees is trivial, such a tree T would give rise to an
efficient congestion approximator R: R would consist of one
row for each cut induced by an edge (u, v) of T with capacity
C, where the matrix entry corresponding to node w is 1/C
if w is on u’s “side” of the cut and 0 otherwise; multiplying a
demand vector with the row then yields the flow that needs
to pass through (u, v) divided by the capacity of the cut.

In a surprising result [?], Räcke showed that, using multi-
plicative weight updates (see e.g. [?, ?, ?]), one can construct

a distribution of Õ(m) trees so that (i) in each tree of the
distribution, each cut has at least the same capacity as in
G and (ii) given any cut of G of total capacity C, sampling
from the distribution results in a tree T where this cut has
expected capacity O(αC); here α is the approximation ra-
tio of a low average stretch spanning tree algorithm Räcke’s
construction uses as subroutine. Note that this bound on
the expectation implies that for any cut of capacity C, there
must be a tree in the distribution for which the cut has
capacity O(αC). Hence, the cuts given by all trees in the
distribution give rise to an O(α)-congestion approximator R

with Õ(mn) rows.

2.3 Low Average Stretch Spanning Trees
In order to perform Räcke’s construction, one requires an

efficient algorithm for computing low average stretch span-
ning trees. More precisely, given a graph G = (V,E, `) with
polynomially bounded lengths ` : E → N, the goal is to
construct a spanning tree T of G so that∑

{u,v}∈E

dT (u, v) ≤ α
∑

{u,v}∈E

`({u, v}) ,

where dT (u, v) is the sum of the lengths of the unique path
from u to v in T and α is the stretch factor.

Sherman’s algorithm builds on a sophisticated low av-
erage stretch spanning tree algorithm that achieves α ∈
O(logn log2 logn) within Õ(m) centralized steps [?]. We

use a simpler approach providing α ∈ 2O(
√
logn log logn) [?]

that has been shown to parallelize well, i.e., has an efficient
implementation in the PRAM model [?].

2.4 Congestion Approximators:
Madry’s Construction

Räcke’s construction has the drawback that one needs
to sequentially compute a linear number of trees, which is
prohibitively expensive from our point of view as well as
Sherman’s. Madry generalized Räcke’s approach to a con-
struction resulting in a distribution over Õ(m/j) so-called
j-trees [?], where j is a parameter. A j-tree consists of a
forest of j connected components (trees) and a core graph,
which is an arbitrary connected graph with j nodes: one
from each tree (see Figure ??).

Figure 1: A 5-tree with core links depicted in brown.

The properties of the distribution are the same as for
Räcke’s: sampling from the distribution preserves cut capac-
ities up to an expected O(α)-factor, where α is the stretch
of the utilized spanning tree algorithm. Likewise, using all
(dominant) cuts of all j-trees in the distribution to construct
R yields an O(α)-congestion approximator. Note that any
cut in a j-tree is dominated by either a cut induced by an
edge of the forest, or by a cut of the core, in the following
sense: Consider any demand vector and any “mixed” cut.
If there is an edge in the forest crossing the cut that has
at least the same congestion as the whole cut, then the cut
induced by the forest edge dominates the mixed cut. Oth-
erwise, we can remove all forest edges from the mixed cut
without reducing its congestion. As routing demands in the
forest part of the graph is trivial, Madry’s construction can
be seen as an efficient reduction of the problem size.

2.5 Congestion Approximators: Combining
Cut Sparsifiers and Madry’s Construction

Using j-trees, Sherman derives a suitable congestion ap-
proxmiator, i.e., one with α ∈ no(1) that can be constructed
and evaluated in Õ(m + n1+o(1)) rounds, as follows. First,
a cut sparsifier is applied to G. A (1 + ε)-sparsifier com-
putes a subgraph of G with modified edge weights so that
the capacities of all cuts are preserved up to factor 1 + ε. It
is known how to compute a (1 + o(1))-sparsifier with Õ(n)

edges in Õ(m) steps [?]. As the goal is merely to compute

a congestion approximator with α ∈ no(1), the multiplica-
tive 1 + o(1) approximation error is negligible. Hence, this
essentially breaks the problem of computing a congestion
approximator down to the same problem on sparse graphs.

Next, Sherman applies Madry’s construction with j =

n/β, where β = 2
√
logn. This yields a distribution of Õ(β)

many n/β-trees. The issue is now that the cores are arbi-
trary graphs, implying that it may be difficult to evaluate
congestion for cuts in the cores. However, the number of
nodes in the core is n′ = n/β. Thus, recursion does the
trick: apply the cut sparsifier to the core, use Madry’s con-
struction on the resulting graph (with j′ = n′/β = n/β2),
rinse and repeat. In total, there are logβ n =

√
logn levels

of recursion until the core becomes trivial, i.e., we arrive at
a tree. For each level of Sherman’s recursion, the approxi-
mation ratio deteriorates by a multiplicative α ∈ polylogn,
where α is the stretch factor of the low-stretch spanning tree
algorithm, and a multiplicative 1+o(1), for applying the cut
sparsifier. This yields an α′-congestion approximator with

α′ ∈ ((1 + o(1))α)
√

logn ⊂ 2O(
√
logn log logn) ⊂ no(1) .

While the total number of constructed trees is Õ(βlogβ n) =

Õ(n), the number of nodes in a graph (i.e., a core from the
previous level) on the ith level of recursion is only n/βi−1.

The cut sparsifier ensures that the number of edges in this
graph is reduced to Õ(n/βi−1) before recursing. Since the
number of edges in the core is (trivially) bounded by the
number of edges of the graph in Madry’s construction, the
total number of sequential computation steps for computing
the distribution is thus bounded by

Õ(m) +

logβ n∑
i=1

Õ(βi · n/βi−1) ⊂ Õ(m+ n1+o(1)) .

2.6 Step Complexity of the Flow Algorithm
The above recursive structure can also be exploited to

evaluate the α′-congestion approximator Sherman uses in
n1+o(1) steps. The cuts of a j-tree are dominated by those
induced by edges of the forest and those which are crossed
by core edges only (cf. Figure ??). In the forest component,
routing demands is unique, takes linear time in the num-
ber of nodes (simply start at the leaves), and results in a
modified demand vector at the core on which we recurse.

Sherman proves that his algorithm obtains a (1 + ε)-ap-
proximate flow in O(ε−3α2 log2 n) gradient descent steps,
provided R is an α-congestion approximator.3 It is straight-
forward to see (cf. Section ??) that each of these steps re-
quires O(m) computational steps besides doing two matrix-
vector multiplications with R and R>, respectively. Using
the above observation and plugging in the time to construct
the (implicit) representation of R, one arrives at a total step

complexity of Õ(mno(1)).

3. DISTRIBUTED ALGORITHM:
CONTRIBUTION AND KEY IDEAS

For a distributed implementation of Sherman’s approach,
many subproblems need to be solved (sufficiently fast) in
the CONGEST model. We summarize them in the following
list, where stars indicate that these components are readily
available from prior work.

* Decomposing trees into O(
√
n) components of strong

diameter O(
√
n), within Õ(

√
n + D) rounds. This

can, e.g., be done by techniques pioneered by Kutten
and Peleg for the purpose of minimum-weight spanning
tree construction [?].

* Constructing cut sparsifiers. Koutis [?] provides a so-
lution that completes in polylogn rounds of the CON-
GEST model. We prove a simulation result for use in
the recursive construction.

1. Constructing low average stretch spanning trees on
multigraphs.

2. Applying the construction of Madry in the CONGEST
model, even when recursing in the context of Sher-
man’s framework.

3. Sampling from the recursively constructed distribu-
tion.

4. Avoiding the use of the entire distribution for con-
structing the congestion approximator (see below).

5. Performing a gradient descent step. This involves, e.g.,
matrix-vector multiplications with R, R> and C−1,
evaluation of the soft-max, etc.

3.1 Low Average Stretch Spanning Trees
3Sherman mentions that Nesterov’s accelerated gradient de-
scent method [?] could reduce this to O(ε−2α log2 n) steps.

Theorem 3.1. Suppose H is a multigraph obtained from

G by assigning arbitrary edge lengths in
[
2n
o(1)
]

to the edges

of G and performing an arbitrary sequence of contractions.
Then we can compute a spanning tree of H of expected stretch

2O(
√
logn log logn) within (

√
n+D)no(1) rounds.

To obtain this theorem, we translate a PRAM algorithm by
Blelloch et al. [?] to the CONGEST model. The main issue
when transitioning from the PRAM to the CONGEST model
is that in the PRAM model, information about distant parts
of the graph may be readily accessed. In the CONGEST
model, we handle this by pipelining long-distance commu-
nication over a global BFS tree of G; communication over
O(
√
n) hops is handled using the edges that have already

been selected for inclusion into the spanning tree and span-
ning trees of the contracted regions of G.

3.2 Implementing Madry’s Scheme
This is technically the most challenging part. Also here,

we have to overcome the difficulty of potentially needing to
communicate a large amount of information over many hops;
doing this naively results in too much contention and thus
slow algorithms. We approach this by modifying Madry’s
construction so that:
• Instead of“aggregating”edges so that the core becomes

a graph, we admit a multigraph as core.
• We do not explicitly construct the core. Instead, we

simulate both the sparsifier and the low average stretch
spanning tree algorithm using the abstraction of clus-
ter graphs.
• In doing so, we maintain that every core edge is also a

graph edge. This enables to handle all communication
over this edge by using the corresponding graph edge.
• The cluster hierarchy that is established during the

construction permits a straightforward recursive eval-
uation of the corresponding congestion approximator.

3.3 Sampling from the Distribution
This is now straightforward, because for each sample, on

each level of the recursion we need to construct only no(1)

different j-trees for some j.

Theorem 3.2 (Informal). Within Õ((
√
n + D) · β)

rounds of the CONGEST model, we can sample a virtual tree
from the distribution used in Sherman’s framework, where
Õ(β) is the number of j-trees in the distribution constructed
when recursing on a core. The distributed representation al-
lows to evaluate the dominant cuts of the tree when using it
in a congestion approximator within Õ(

√
n+D) rounds.

3.4 Avoiding the Use of the entire Distribution
for the Congestion Approximator

While Sherman can afford to use all trees in the (re-
cursively constructed) distribution, the above theorem is

not strong enough to allow for fast evaluation of all Θ̃(n)
trees. As Madry points out [?], it suffices to sample and use
O(logn) j-trees from the distribution he constructs to speed
up any β-approximation algorithm for an “undirected cut-
based minimization problem”, at the expense of an increased
approximation ratio of 2αβ, where α is the approximation
ratio of the congestion approximator corresponding to the
distribution of j-trees. The reasoning is as follows:
• The number of cuts that need to be considered for such

a problem is polynomially bounded.

• The expected approximation ratio for any fixed cut
when sampling from the distribution is α. By Markov’s
bound, with probability at least 1/2 it is at most 2α.
• For O(logn) samples, the union bound shows that

w.h.p. all relevant cuts are 2α-approximated.
• Applying a β-approximation algorithm relying on the

samples only, which can be evaluated much faster, re-
sults in a 2αβ-approximation w.h.p.

Recall that the problem of approximating a max flow was
translated to minimizing congestion for demands −F and F
at s and t and performing binary search over F . The max-
flow min-cut theorem implies the respective congestion to
be the function of a single cut, which can be used to verify
that the problem falls under Madry’s definition.

Unfortunately, applying the sampling strategy as indi-
cated by Madry is infeasible in Sherman’s framework. As
the goal is a (1 + ε)-approximation, applying it to the above
problem directly will yield a too inaccurate approximation.
Alternatively, we can apply it in the construction of a con-
gestion approximator. However, a congestion approximator
must return a good approximation for any demand vector.
There are exponentially many such vectors even if we re-
strict b ∈ {−1, 0, 1}n, and we are not aware of any result
showing that the number of min-cuts corresponding to the
respective optimal flows is polynomially bounded.

We resolve this issue with the following simple, but essen-
tial insight, at the expense of squaring the approximation
ratio of the resulting congestion approximator.

Lemma 3.3. Suppose we are given a distribution of polyn
trees so that given any cut of G of capacity C, sampling from
the distribution results in a tree whose corresponding cut has
at least capacity C and at most capacity αC in expectation.
Then sampling O(logn) such trees and constructing a con-
gestion approximator from their single-edge induced cuts re-
sults in a 2α2-congestion approximator of G w.h.p.

Proof. Recall that cut approximators estimate the max-
imum congestion when optimally routing an arbitrary de-
mand. Consider any demand vector and denote by C the
capacity of the corresponding cut that is most congested
when routing the demand. As sampling from the distri-
bution yields approximation factor α in expectation, there
must be some tree T in the distribution whose correspond-
ing cut has capacity at most αC. However, this means that
when routing the demand via T , there is some edge in T
that experiences at least 1/α times the maximum congestion
when routing the demand optimally in G. As the capacity
of the edge is at least that of the corresponding cut in G,
it follows that the corresponding cut of G has congestion at
least 1/α of that of the min-cut when routing the demand.

As there are polyn trees, each of which has n − 1 edges,
this shows that for any demand vector there is one of polyno-
mially many cuts of G that experience at least 1/α times the
maximum congestion when optimally routing the demand
vector. By Markov’s bound and the union bound, w.h.p.
the congestion on each of these cuts will be approximated
up to another factor of 2α when using O(logn) samples.

3.5 Performing a Gradient Descent Step
Most of the high-level operations required for executing a

gradient descent algorithm are straightforward to implement
using direct communication between neighbors or broadcast
and convergecast operations on a BFS tree. The most in-

volved part is multiplying the (implicitly constructed) con-
gestion approximator R with an arbitrary demand vector b,
and multiplying the transposed of the approximator matrix,
R>, with a given vector that specifies a cost for each edge
of the trees.

Multiplying by R is done by exploiting that routing on
trees is trivial and using standard techniques: during the
construction, we already decomposed each tree into O(

√
n)

components of strong diameter O(
√
n), which can be used

to solve partially by contracting components, make the re-
sulting tree of O(

√
n) nodes globally known, then determine

modified demand vectors for the components out of the now
locally computable partial solution, and finally resolve these
remaining demands within each component. Multiplication
with R> is implemented using similar ideas. We refer to Sec-
tion ?? for a detailed discussion of these procedures. Plug-
ging the building blocks outlined in this section into this
machinery, we obtain our main result Theorem ??.

4. THE DISTRIBUTED CONGESTION
APPROXIMATOR CONSTRUCTION

In this section, we outline how to adapt Madry’s construc-
tion to its recursive application in the distributed setting.
We formally prove that we achieve the same guarantees as
Madry’s distribution [?] in each recursive step and that
our distributed implementation is fast. Here, we focus on
presenting the main ideas of the required modifications to
Madry’s scheme and its distributed implementation; to this
end, it suffices to consider a single step of the recursion.

4.1 Centralized Algorithm
As a starting point, let us summarize the main steps of one

iteration of the centralized construction. We state a slightly
simplified variant of Madry’s construction, which offers the
same worst-case performance and is a better starting point
for what follows. From the previous step of constructing
the distribution, an edge length function `e is known (in
the distributed setting, this knowledge will be local). Given
j ≤ n− 1, the following construction yields a Θ(j)-tree.

1. Compute a spanning tree T of G of stretch α.
2. For each edge e = {v, w} ∈ E of the graph G, route

cap(e) units of a commodity come from v to w on (the
unique path from v to w in) T .4 Denote by f the
vector of the sum of absolute flows passing through
the edges of T . Recall that maxe∈E{cap(e)} ∈ polyn
and thus ‖f‖∞ ∈ poly(n).

3. For e ∈ T , define the relative load of e as rload(e) :=
|fe|/cap(e) ∈ polyn. We decompose the edge set of
T into O(logn) subsets Fi, i ∈ {1, . . . , dlog(‖f‖∞ +

1)e}, where e ∈ T is in Fi if rload(e) ∈ (R/2i, R/2i−1]
for R := maxe∈T {rload(e)}. As T has n − 1 ≥ j
edges, there must be some Fi with Ω(j/ logn) edges;
let i0 be minimal with this property. Define F := {e ∈
T | rload(e) > 2i0−1}. Note that |F| ≤ j.

4. T \F is a spanning forest of at most j+1 components.
Define H as the graph on node set V whose edge set is
the union of T \F and all edges of G between different
components of (V, T \ F).

4The difference to a single commodity is simply that flows in
opposing directions do not cancel out. This means that any
given feasible (i.e., congestion-1) flow in G can be routed on
T with at most the congestion of this multi-commodity flow.

5. For components C and C′ of (V, T \F), pick arbitrary
v ∈ C and w ∈ C′ and denote by p(C,C′) ∈ C the last
node from C on the v-w path in T ; note that p(C,C′)
does not depend on the choice of v and w. Denote by
P the set of such portals. Replace all edges between
different components C,C′ of (V, T \ F) by parallel
edges {p(C,C′), p(C′, C)} (of the same capacity).

6. In the resulting multigraph, iteratively delete nodes
from V \P of degree 1 until no such node remains. Note
that the leaves of the induced subtree of T must be
in P , showing that the number of remaining nodes in
V \P of degree larger than 2 is bounded by |P |−1 < 2j.
Add all such nodes to P .

7. For each path with endpoints in P and no inner nodes
in P , delete an edge of minimum capacity and replace
it by an edge of the same capacity between its end-
points.

8. Re-add the nodes and edges of T \ F that have been
deleted in Step 6.

9. For any p, q ∈ P , merge all parallel edges {p, q} into a
single one whose capacity is the sum of the individual
capacities. The result is a j′-tree for j′ = |P | < 4j.

In his paper, Madry provides a scheme for updating the edge
lengths between iterations so that this construction results in
a distribution on Õ(m/j) Θ(j)-trees that approximate cuts
up to an expected O(α)-factor, where α is the stretch of the
spanning tree construction. Updating the edge length func-
tion poses no challenges, so we will focus on the distributed
implementation of the above steps in this section.

4.2 Differences to the Centralized Algorithm
Before we come to the distributed algorithm, let us first

discuss a few changes we make to the algorithm in central-
ized terms. These do not affect the reasoning underlying the
scheme, but greatly simplify its distributed implementation.
• We will omit the last step of the algorithm and instead

operate on cores that are multigraphs. This changes
the computed distribution, as we formally use a differ-
ent graph as input to the recursion. However, Räcke’s
arguments (and Madry’s generalization) work equally
well on multigraphs, as one can see by replacing each
edge of the multigraph by a path of length 2, where
both edges have the same capacity as the original edge.
This recovers a graph of 2m edges from a multigraph
of m edges without affecting the cut structure, and
the resulting trees can be interpreted as trees on the
multigraph by contraction of the previously expanded
edges. Similarly, both the low average stretch span-
ning tree construction and the cut sparsifier work on
multigraphs without modification.
• After computing the spanning tree, we will immedi-

ately delete a subset of Õ(
√
n) edges to ensure that

the new clusters will have low-depth spanning trees.
The deleted edges are replaced by all edges of G cross-
ing the corresponding cuts and will end up in the core.
The same procedure is, in fact, applied to all edges
selected into F in Step 3 of the centralized routine;
Madry’s arguments show that removing any subset of
edges of T and replacing it this way can only improve
the quality of cut approximation. The main point of
his analysis is that choosing F in the way he does guar-
antees that, in terms of constructing the final distri-
bution of j-trees, progress proportional to the number

-
+

+

+
-

+
+

-

c
+

ĉ

𝒯𝑐

Figure 2: Illustration of the underlying idea of the aggregation
scheme for the cut capacities. The cut corresponding to edge (c, ĉ)
of the tree has a total capacity given by all graph edges leaving
the subtree Tc. By labeling the endpoint of graph edge by “+” if
it leaves the subtree and by “−” if it connects to a descendant,
the cut capacity is thus the sum of all capacities of edges labeled
“+” minus all those of edges labeled “−” within Tc.

of edges in Ri0 is made. We will apply the construc-
tion to cores of size n′ � Õ(

√
n), which implies that

removing the additional edges has asymptotically no
effect on the progress guarantee.
• In the counterpart to Step 6 in Madry’s routine, also

nodes from P may be removed if their degree becomes
1. Also here, there is no asymptotic difference in the
worst-case performance of our routine from Madry’s.

To simplify the presentation, in this section we will as-
sume that all trees involved in the construction have depth
Õ(
√
n). This means that we can omit the deletion of Õ(

√
n)

additional edges and further related technicalities. The gen-
eral case is handled by standard techniques for decomposing
trees into O(

√
n) components of depth Õ(

√
n) and relying

on a BFS tree to communicate “summaries” of the compo-
nents to all nodes in the graph within Õ(

√
n + D) rounds.

This approach was first used for MST construction [?]; we
use a simpler randomized variant.

4.3 Cluster Graphs
Recall that we will recursively call (a variant of) the above

centralized procedure on the core. We need to simulate the
algorithm on the core by communicating on G. To this end,
we will use cluster graphs, in which G is decomposed into
components that play the role of core nodes We maintain
the following invariants during the recursion:

1. There is a one-to-one correspondence between nodes
of the core and clusters.

2. Each cluster c has a rooted spanning tree of depth
Õ(
√
n).

3. No other edges exist inside clusters. Contracting clus-
ters yields the multigraph resulting from the above
construction without Step 9. From now on, we will
refer to this multigraph as the core.

4. All edges in the (non-contracted) graph are also edges
of G, and their endpoints know their lengths from the
previous iteration of the recursion.

4.4 Overview of the Distributed Routine
We follow the same strategy as the centralized algorithm,

with the modifications discussed above. This implies that
the core edges for the next recursive call will simply be the
graph edges between the newly constructed clusters. The
following sketches the main steps of the distributed imple-
mentation of our overall approach.

1. Compute a spanning tree T of stretch α of the core.
This is done by the spanning tree algorithm of Theo-
rem ??, which can operate on the cluster graph.

2. For each edge e ∈ T , determine its absolute flow |fe|
(and thus rload(e) = |fe|/cap(e)) as follows (cf. Fig-
ure ??).
(*) For each cluster c, consider the cut induced by

the edge to its parent. For each “side” of the
cut, we want to determine the total capacity of
all edges incident to nodes of c that connect to
the respective side of the cut. Denote by c+ the
total “outgoing” capacity of cluster c towards the
root’s side and by c− the “incoming” capacity.

(a) Each cluster c learns its ancestor clusters in the
spanning tree of C.

(b) Observe that for a cluster c, an edge does con-
tribute to c− if and only if it connects to a node
within its subtree Tc. From the previous step, this
information is known to one of the endpoints of
the edge. We communicate this and determine in
each cluster c the values c+ and c− by aggregation
on its spanning tree.

(c) Suppose e ∈ T is the edge from cluster c to its
parent. Using aggregation on the spanning tree
of C, we compute |fe| =

∑
c′∈Tc c

′
+ − c′−.

3. Determine the index i0 (as in Step 3 of the centralized
routine). Given that rload(e) for each e ∈ T is locally

known, this is performed in Õ(D) rounds using binary
search in combination with converge- and broadcasts
on a BFS tree. We set F := {e ∈ T | rload(e) >
2i0−1}.

4. Define P as the set of clusters incident to edges in F . A
simple broadcast on the cluster spanning trees makes
membership known to all nodes of each cluster c ∈ P .

5. Iteratively mark clusters c /∈ P with at most one un-
marked neighboring cluster, until this process stops.
Add all unmarked clusters that retain more than 2
unmarked neighboring clusters to P .

6. For each path with endpoints in P whose inner nodes
are unmarked clusters not in P , find the edge e ∈ T \F
of minimal capacity and add it to F . This disconnects
any two clusters c, c′ ∈ P , c 6= c′, in T \ F .

7. Each component of T \ F and the spanning trees of
clusters induce a spanning tree of the corresponding
component of G. Each such component is a new clus-
ter. Make the identifier of the unique c ∈ P of each
cluster known to its nodes and delete all edges between
nodes in the cluster not being part of its spanning tree.

If all trees have depth Õ(
√
n), all the above steps can be

completed in Õ(
√
n + D) rounds. Clearly, the first three

stated invariants are satisfied by the given construction. As
mentioned earlier, it is also straightforward to update the
edge lengths, i.e., establish the fourth invariant. Once the
distribution on the current level of recursion is computed,
one can hence sample and then move on to the next level.

5. THE HIGH-LEVEL ALGORITHM
The algorithm is a distributed implementation of Sher-

man’s algorithm [?]. It consists of a logarithmic number
of calls to algorithm AlmostRoute and one computation of
a maximum-weight spanning tree and routing the left-over
demand through this tree. Most of this section is dedicated

to explaining how to implement the AlmostRoute algorithm.
Let us first quickly outline how we implement the final steps
using standard techniques.

Lemma 5.1. Routing the leftover demands over an MST
can be implemented in the CONGEST model in Õ(D +

√
n)

rounds w.h.p.

Proof Sketch. A maximum weight spanning tree T can
be computed in Õ(D +

√
n) rounds using the minimum

weight spanning tree algorithm of Kutten and Peleg [?]. To
compute the flow, we use the following observation: if T was
rooted at one of its nodes, then to route the demand over T ,
it would suffice for each node v to learn the total demand dv
in the subtree rooted at v. Then, v assigns dv units of flow
to the edge leading from v to its parent.

We now show how to root the tree and find the total de-
mand in each subtree in Õ(D+

√
n) rounds. The algorithm

is as follows. Remove each edge of the tree independently
with probability 1/

√
n. W.h.p.,

(i) each connected component induced by the remaining

edges contains has strong diameter Õ(
√
n),

(ii) O(
√
n) edges are removed, and hence

(iii) the number of components is O(
√
n).

Within each component, all demands are summed up, and
this sum is made known to all nodes. The summation takes
Õ(
√
n) rounds due to (i), and we can pipeline the announce-

ment over a BFS tree in Õ(
√
n+D) rounds due to (iii).

Moreover, in this time we can also assign unique identi-
fiers to the components (e.g., the minimum identifier) and
make the tree resulting from contracting components glob-
ally known. Using local computation only, nodes then can
root this tree (e.g. at the cluster of minimum identifier) and
determine the sum the demands of the clusters that are fully
contained in their subtree. Using a simple broadcast, the
orientation of edges within components is determined, and
using a convergecast on the components, each node can de-
termine the sum of demands in its subtree. These steps take
another Õ(

√
n) rounds.

5.1 Algorithm AlmostRoute:
the Gradient Descent

We now explain how to implement Algorithm AlmostRoute
in a distributed setting. The idea is to use gradient descent
with the potential function

φ(f) = smax(C−1f) + smax(2αR(b−Bf)) ,

where the “soft-max” function, defined by

smax(y) = log

(
k∑
i=1

eyi + e−yi

)
for all y ∈ Rk ,

is used as a differentiable approximation to the max-norm.
AlmostRoute performs O(α2ε−3 logn) iterations to com-

pute a flow f optimizing the potential up to factor (1 + ε).
Pseudocode for this algorithm is given in Algorithm ??.

To implement this algorithm in a distributed setting, we
need to compute R, and multiply by R or its transpose R>.
These multiplications are required for computing φ(f) and
and its partial derivatives. We remark that R and R> are
not constructed explicitly, as we need to ensure a small time
complexity for each iteration. Assuming that we can per-
form these operations, each step of AlmostRoute can be com-
pleted in Õ(D) additional rounds.

Algorithm 1 AlmostRoute(b, ε)

1: kb ← 2α ‖Rb‖∞ ε/(16 logn); b← kbb.
2: repeat
3: kf ← 1

4: while φ(f) < 16ε−1 logn do
5: f ← f · (17/16); b← b · (17/16); kf ← kf · (17/16)
6: δ ←

∑
e∈E |cap(e)

∂φ
∂fe
|

7: if δ ≥ ε/4 then

8: fe ← fe − sgn
(
∂φ
∂fe

)
· cap(e) δ

1+4α2

9: else
10: fe ← fe/kf for all edges e ∈ E.
11: bv ← bv/(kbkf) for all nodes v ∈ V
12: return
13: until done

We maintain the invariant that at the beginning of each
iteration of the repeat loop, each node v knows the current
flow over each of the links v is incident to, and the current
demand at v (i.e., (b − Bf)v). Let us break the potential
function φ in two, i.e.,

φ(f) = φ1(f) + φ2(f) , where

φ1(f) = smax(C−1f) and φ2(f) = smax(2αR(b−Bf)).

We proceed as follows. First, we compute φ1(f): to find
smax(C−1f), it suffices to sum both exp(fe/cap(e)) and
exp(−fe/cap(e)) over all edges e, which can be done in O(D)
rounds. As Sherman points out, φ(f) = Θ(ε−1 logn) due
to the scaling, and thus, encoding exp(φ(f)) with sufficient
accuracy requires O(ε−1 logn) bits, which is thereby also
a bound on the encoding length of all individual terms in
the sums for φ1 and φ2. The error introduced by rounding
theses values to integers is small enough to not affect the
asymptotics of the running time.

For determining φ2(f), we first compute the vector y :=
2αR(b−Bf) and then do an aggregation on a BFS tree as
for φ1(f). Since Bf can be computed instantly ((Bf)v is
exactly the net flow into v), this boils down to multiplying a
locally known vector with R. Before we discuss how imple-
ment this operation, let us explain more about the structure
ofR and how we determine ∂φ

∂fe
, which is required in Lines ??

and ??.
The linear operator R is induced by graph cuts. More

precisely, in the matrix representation of R, there is one
row for each cut our congestion approximator (explicitly)
considers. We will clarify the structure of R shortly; for
now, denote by I the set of row indices of R. Observe that

∂φ

∂fe
=

exp(fe/cap(e))− exp(−fe/cap(e))

cap(e) exp(φ1)
+
∂φ2

∂fe
(2)

and hence, given that φ1 is known, the first term is locally
computable. The second term expands to

∂φ2

∂fe
=
∑
i∈I

∂φ2

∂yi
· ∂yi
∂fe

=
∑
i∈I

exp(yi)− exp(−yi)
exp(φ2)

· 2αBi,e
cap(i)

,

where cap(i) is the capacity of cut i in the congestion approx-
imator and Bi,e ∈ {−1, 0, 1} denotes whether e is outgoing
(−1), ingoing (1), or not crossing cut i.5

The cuts i ∈ I are induced by the edges of a collection
of (rooted, virtual, capacitated) spanning trees T, where for

5Technically, Bi,e =
∑
v∈Si Bve where Si is the set of nodes

defining cut i.

T ∈ T we write (v, v̂) ∈ T if v̂ is the parent of v and denote
by Tv the subtree rooted at v. For each T ∈ T, each edge
(v, v̂) ∈ T now induces a (directed) cut (Tv;Tv) with index
i(T , (v, v̂)). We denote the set of edges crossing this cut by
by δ(Tv). Let us also define

p(T , v) =
exp(yi(T ,(v,v̂)))− exp(−yi(T ,(v,v̂)))

exp(φ2)
· 2α

capT ((v, v̂))
.

With this notation, we have that

∂φ2

∂fe
=
∑
T ∈T

∑
(v,v̂)∈T
e∈δ(Tv)

p(T , v) ·Bi(T ,(v,v̂)),e.

We call p(T , (v, v̂)) the price of the (virtual) edge (v, v̂) ∈ T .
Let Pv,T denote the unique path in T from v to the root of
T . We define a node potential for each node v by

πv :=
∑
T ∈T

∑
(w,ŵ)∈Pv,T

p(T , (w, ŵ)) .

For any e = (u, v), the cuts induced by edges in T ∈ T that
e crosses correspond to the edges on the unique path from u
to v in T . For all edges (w, ŵ) ∈ T on the path from u to the
least common ancestor of u and v in T , Bi(T ,(w,ŵ)),e = −1,
while Bi(T ,(w,ŵ)),e = +1 for the edges on the path between
v and this least common ancestor. Thus,

∂φ2

∂fe
= πv − πu , (3)

and our task boils down to determining the value of the
potential πv at each node v ∈ V . For that, we use two sub-
routines to compute distributedly the following quantities:

(1) yi for each cut i. Note that b−Bf is known distribut-
edly, i.e., each node knows its own coordinate of this
vector. For each tree in T ∈ T, we need to aggre-
gate this information from the leaves to the root, i.e.,
simulate a convergecast on the virtual tree T .

(2) πv for each node v. Provided that each (virtual) tree
edge knows its y-value and φ2, the prices can be com-
puted locally. Then the contribution of each tree to
the node potentials can be computed by a downcast
from the corresponding root to its leaves.

With these routines, one iteration of the repeat loop is now
executed as follows:

1. Compute φ1, y (local knowledge), and φ2 (aggregation
on BFS tree once y is known).

2. Check the condition in Line ??. If it holds, locally
update b, f , and kf , and go to the previous step.

3. Compute the potential π (local knowledge).
4. For each e ∈ E, its incident nodes determine ∂φ

∂fe

(based on Equations ?? and ??, it suffices to exchange
πu and πv over e).

5. Compute δ (aggregation on BFS tree).
6. Locally update fe and bv for all e ∈ E and v ∈ V .

Note that all of the individual operations except for compu-
tation of y and π can be completed in O(D) rounds. Sher-

man proved [?] that AlmostRoute terminates after Õ(ε−3α2)
iterations. As it is only called O(logn) times by the max-
flow algorithm, Theorem ?? follows if we can compute y and
π in (

√
n+D)no(1) rounds for an α-congestion approximator

with α = no(1); this is subject of the next subsection.

5.2 Congestion Approximation

level-0 cluster = node top-level cluster.
There are 𝑂 𝑛 such
clusters

each cluster is
spanned in 𝐺 by an
𝑂 (𝑛)-depth tree

virtual tree
edge 𝑒

physical edge 𝑝(𝑒),
responsible for virtual
edge 𝑒

Figure 3: Hiearchical cluster decomposition of a virtual tree T ∈
T. Black edges are virtual tree edges represented by a physical
edge connecting the top-level clusters they connect (the orange
dotted edge p(e) corresponds to the edge labeled e). Each cluster

is spanned by a tree in G of depth Õ(
√
n), which is not shown.

Our congestion approximator R is defined by the edge-
induced cuts of a sample T of virtual trees T from a recur-
sively constructed distribution. The trees are represented
distributedly by a hierarchy of cluster graphs (see Figure ??
for an illustration). Intuitively, a cluster graph partitions
the nodes into clusters, each of which has a spanning tree
rooted at a leader, and a collection of edges between clusters
that are represented by corresponding graph edges between
some nodes of the clusters they connect.

Theorem 5.2. W.h.p., within (
√
n + D)no(1) rounds of

the CONGEST model, we can sample a tree T from a distri-
bution of n1+o(1) (virtual) rooted spanning trees on G with
the following properties.
• For any cut of G of capacity C, the capacity of the cut

in T is at least C.
• For any cut of G of capacity C, the expected capacity

of the cut in T is at most αC, where α ∈ no(1).
• The distributed representation of T is given by a hi-

erarchy of cluster graphs Gi on cluster sets Vi (their
“nodes”), i ∈ {0, . . . , i0}, i0 ∈ o(logn), on network
graph G, with the following properties.

– Spanning trees of clusters of Gi have depth Õ(
√
n).

– |Vi0 | = n1/2+o(1).
– Gi (as graph on node set Vi) is the (rooted) tree

resulting from T by contracting the clusters of Gi.
– For i > 0, Gi is also a cluster graph on network

graph Gi−1.
– For i > 0, each cluster ci ∈ Vi of Gi, interpreted

as cluster graph on Gi−1, contains a unique portal
cluster p(ci) ∈ Vi−1 of Gi−1 that is incident to all
edges of Gi containing ci. That is, Gi−1 is a |Vi|-
tree with core p(Vi).

The first two properties of each T stated in the theorem
imply that we can use them to construct a good congestion
approximator R. More precisely, Lemma ?? implies:

Corollary 5.3. Sampling a collection T of O(logn) vir-
tual trees given by Theorem ?? and using them as congestion
approximator R in the way specified in Section ?? implies
that the total number of iterations of Algorithm ?? is no(1).

All that remains now is to show that the distributed rep-
resentation of each sampled T ∈ T allows to simulate a

convergecast and a downcast on T in (
√
n+D)no(1) rounds:

then we can implement the key subroutines (1) and (2) (i.e.,
compute y and π) outlined in Section ?? with this time
complexity, and by Corollary ?? the total number of rounds
of the computation is bounded by (

√
n+D)no(1).

Fortunately, the recursive structure of the decomposition
is very specific. The cluster graphs of the different levels of
recursion are nested, i.e., the clusters of the (i − 1)th level
of recursion are subdivisions of the clusters of the ith level.
What is more, each cluster is a subtree of the virtual tree
and is spanned by a tree of depth Õ(

√
n) in G (cf. Fig-

ure ??) Hence, while the physical graph edges representing
the virtual tree edges are between arbitrary nodes within
the clusters they connect, we can (i) identify each cluster
on each hierarchy level with the root of the subtree induced
by its nodes, (ii) handle such subtrees recursively (both for
convergecasts and downcasts), (iii) on each level of recur-
sion but the last, perform the relevant communication by
broadcasting or upcasting on the underlying cluster span-
ning trees in G of depth Õ(

√
n), and (iv) communicate over

a BFS tree of G on the final level of recursion, where merely
n1/2+o(1) clusters/nodes of the virtual tree remain.

Corollary 5.4. On each virtual tree T ∈ T, we can sim-
ulate convergecast and upcast in Õ(

√
n+D) rounds.

Theorem ?? now follows from Sherman’s results on the num-
ber of iterations of the gradient descent algorithm [?], the
discussion in Section ??, and Corollaries ?? and ??.

6. REFERENCES
[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight

low stretch spanning trees. In Proc. of the Symp. on
Found. of Comp. Sci. (FOCS), pages 781–790. IEEE,
2008.

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.
Network Flows. Prentice-Hall, Engelwood Cliffs, New
Jersey, 1993.

[3] N. Alon, R. M. Karp, D. Peleg, and D. West. A
graph-theoretic game and its application to the
k-server problem. SIAM Journal on Computing,
24(1):78–100, 1995.

[4] S. Arora, E. Hazan, and S. Kale. The multiplicative
weights update method: a meta-algorithm and
applications. Theory of Computing, 8(1):121–164,
2012.

[5] B. Awerbuch. Reducing complexities of the distributed
max-flow and breadth-first-search algorithms by
means of network synchronization. Networks,
15(4):425–437, Winter 1985.

[6] B. Awerbuch and R. Khandekar. Stateless distributed
gradient descent for positive linear programs. SIAM
Journal on Computing, 38(6):2468–2486, 2009.

[7] B. Awerbuch, R. Khandekar, and S. Rao. Distributed
algorithms for multicommodity flow problems via
approximate steepest descent framework. ACM
Transactions on Algorithms, 9(1):3, 2012.

[8] B. Awerbuch and T. Leighton. Improved
approximation algorithms for the multi-commodity
flow problem and local competitive routing for
dynamic networks. In Proc. 26th Ann. ACM Symp. on
Theory of Computing, pages 487–496, 1994.

[9] A. A. Benczúr and D. R. Karger. Randomized
approximation schemes for cuts and flows in
capacitated graphs. CoRR, cs.DS/0207078, 2002.

[10] G. E. Blelloch, A. Gupta, I. Koutis, G. L. Miller,
R. Peng, and K. Tangwongsan. Nearly-linear work
parallel SDD solvers, low-diameter decomposition, and
low-stretch subgraphs. Theory Comput. Syst.,
55(3):521–554, 2014.

[11] A. Das Sarma, S. Holzer, L. Kor, A. Korman,
D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness
of distributed approximation. In Proc. of the Symp. on
Theory of Comp. (STOC), pages 363–372, 2011.

[12] A. V. Goldberg and R. E. Tarjan. Efficient maximum
flow algorithms. Commun. ACM, 57(8):82–89, August
2014.

[13] I. Koutis. Simple parallel and distributed algorithms
for spectral graph sparsification. In the Proceedings of
the Symposium on Parallel Algorithms and
Architectures, pages 61–66, 2014.

[14] S. Kutten and D. Peleg. Fast distributed construction
of k-dominating sets and applications. In the Proc. of
the Int’l Symp. on Princ. of Dist. Comp. (PODC),
pages 238–251, 1995.

[15] A. Madry. Fast approximation algorithms for
cut-based problems in undirected graphs. In Proc. of
the Symp. on Found. of Comp. Sci. (FOCS), pages
245–254, 2010.

[16] J. M. Marberg and E. Gafni. An O(n2m1/2)
distributed max-flow algorithm. In Int. Conf. on
Parallel Processing, (ICPP’87), pages 213–216, 1987.

[17] Y. Nesterov. Introductory lectures on convex
optimization, volume 87. Springer Science & Business
Media, 2004.

[18] Y. Nesterov. Smooth minimization of non-smooth
functions. Mathematical programming, 103(1):127–152,
2005.

[19] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[20] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast
approximation algorithms for fractional packing and
covering problems. Mathematics of Operations
Research, 20(2):257–301, 1995.

[21] H. Räcke. Optimal hierarchical decompositions for
congestion minimization in networks. In Proc. of the
Symp. on Theory of Comp. (STOC), pages 255–264,
2008.

[22] A. Schrijver. On the history of the transportation and
maximum flow problems. Mathematical Programming,
91(3):437–445, 2002.

[23] A. Segall. Decentralized maximum-flow protocols.
Networks, 12(3):213–230, Fall 1982.

[24] J. Sherman. Nearly maximum flows in nearly linear
time. In Proc. of the Symp. on Found. of Comp. Sci.
(FOCS), pages 263–269, 2013.

[25] N. E. Young. Sequential and parallel algorithms for
mixed packing and covering. In Proc. of the Symp. on
Found. of Comp. Sci. (FOCS), pages 538–546. IEEE,
2001.

