

Algorithms Theory

15 - Text search

P.D. Dr. Alexander Souza

Text search

Various scenarios:

Dynamic texts

- Text editors
- Symbol manipulators

Static texts

- Literature databases
- Library systems
- Gene databases
- World Wide Web

Text search

Data type **string**:

- array of character
- file of character
- list of character

Operations (let *T*, *P* be of type **string**)

length: length ()

i-th character : T[i]

concatenation: cat (T, P) T.P

Problem definition

Given:

text
$$t_1 t_2 \dots t_n \in \Sigma^n$$

pattern $p_1 p_2 \dots p_m \in \Sigma^m$

Goal:

Find one or all occurrences of the pattern in the text, i.e. positions i ($0 \le i \le n - m$) such that

$$p_{1} = t_{i+1}$$

$$p_{2} = t_{i+2}$$

$$\vdots$$

$$p_{m} = t_{i+m}$$

Problem definition

text:
$$t_1$$
 t_2 t_{i+1} t_{i+m} t_n pattern: $\rightarrow p_1$ p_m

Running time:

- 1. # possible alignments: n m + 1, # pattern positions: $m \rightarrow O(n m)$
- 2. At least 1 comparison per m consecutive text positions: $\rightarrow \Omega (m + n/m)$

Naive method

For each possible position $0 \le i \le n - m$, check at most m character pairs. Whenever a mismatch occurs, shift to the next position.

```
textsearchbf := proc (T:: string, P:: string)
# Input: text T, pattern P
# Output: list L of positions i, at which P occurs in T
n := \text{length } (T); m := \text{length } (P);
L := [\ ];
for i from 0 to n - m do
j := 1;
while j \le m and T[\ i + j] = P[\ j]
do j := j + 1 od;
if j = m + 1 then L := [\ L[\ ], i] fi;
od;
RETURN (L)
end;
```

Winter term 11/12

Naive method

Running time:

Worst case: $\Omega(m n)$

In practice, a mismatch usually occurs very early.

 \rightarrow running time $\sim c n$

Let t_i and p_{i+1} be the characters to be compared:

If, for a certain alignment, the first mismatch occurs for characters t_i and p_{i+1} , then:

- the last j characters compared in T equal the first j characters of P
- $t_i \neq p_{j+1}$

Idea:

Find j' = next[j] < j such that t_i can then be compared to $p_{j'+1}$.

Find greatest j' < j such that $P_{1...j'} = P_{j-j'+1...j'}$.

Find the longest prefix of P that is a proper suffix of $P_{1...j}$.

10

Example for determining *next* [*j*]:

$$t_1$$
 t_2 ... 01011 01011 0 ... 01011 1 01011 1 01011 1

 $next[j] = length of the longest prefix of P that is a proper suffix of <math>P_{1...j}$

The Knuth-Morris-Pratt algorithm (KMP)

$$\Rightarrow$$
 for $P = 0101101011$, $next = [0,0,1,2,0,1,2,3,4,5]$:

1	2	3	4	5	6	7	8	9	10
0	1	0	1	1	0	1	0	1	1
		0							
		0	1						
					_				

0 1 0 1 0 1 0 1 0 1

The Knuth-Morris-Pratt algorithm (KMP)

```
KMP := proc (T: string, P: string)
# Input: text T, pattern P
# Output: list L of positions i at which P occurs in T
   n := length(T); m := length(P);
   L := []; next := KMPnext(P);
   i := 0;
   for i from 1 to n do
        while j > 0 and T[i] \Leftrightarrow P[j+1] do j := next[j] od;
        if T[i] = P[j+1] then j := j+1 fi;
        if j = m then L := [L[], i-m];
                      j := next[ j ]
        fi;
   od;
   RETURN (L);
end;
```

Winter term 11/12

Pattern: abrakadabra, next = [0,0,0,1,0,1,0,1,2,3,4]

$$next[11] = 4$$

```
abrakadabrabrababrak...
- - - + \downarrow
abrak
abrak
next[4] = 1
```



```
abrakadabrabrababrak...
             - | | | /
             abrak
             next[4] = 1
abrakadabrabrababrak...
                 - | /
                 abrak
                 next[2] = 0
abrakadabrabrababrak...
                    abrak
```


Correctness:

When starting the for-loop:

$$P_{1...j} = T_{i-j...i-1}$$
 and $j \neq m$

if j = 0: we are located at the first character of P

if $j \neq 0$: P can be shifted while j > 0 and $t_i \neq p_{j+1}$

The Knuth-Morris-Pratt algorithm (KMP)

If T[i] = P[j+1], j and i can be increased (at the end of the loop).

If P has been compared completely (j = m), an occurrence of P in T has been found and we can shift to the next position.

The Knuth-Morris-Pratt algorithm (KMP)

Running time:

- the text pointer *i* is never reset
- text pointer i and pattern pointer j are always incremented together
- always: next [j] < j;
 j can be decreased only as many times as it has been increased

If the *next*-array is known, the KMP algorithm runs in O(n) time.

Winter term 11/12 17

 $next[i] = length of the longest prefix of P that is a proper suffix of <math>P_{1...i}$

$$next[1] = 0$$

Let $next[i-1] = j$:

Winter term 11/12 18

Consider two cases:

1)
$$p_i = p_{j+1} \rightarrow next[i] = j + 1$$

2)
$$p_i \neq p_{j+1} \rightarrow \text{replace } j \text{ by } next[j] \text{ until } p_i = p_{j+1} \text{ or } j = 0$$

If $p_i = p_{j+1}$, set $next[i] = j + 1$, otherwise $next[i] = 0$.

20

```
KMPnext := proc (P : : string)
# Input: pattern P
# Output: next-array for P
   m := length(P);
   next := array (1...m);
   next[1] := 0;
   j := 0;
   for i from 2 to m do
      while j > 0 and P[i] <> P[j+1]
         do j :- next [ j ] od;
     if P[i] = P[j+1] then j := j+1 fi;
      next[i] := j
   od;
   RETURN (next);
end;
```

Winter term 11/12

Running time of KMP

The KMP algorithm runs in O(n + m) time.

Can text search be realized even faster?

The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan the characters from right to left rather than from left to right.

Example:

```
he said abrakadabra but
but

he said abrakadabra but

the but
```

The Boyer-Moore algorithm (BM)


```
he said abrakadabra but
      but
he said abrakadabra but
         but
he said abrakadabra but
            but
```



```
he said abrakadabra but
                   but
he said abrakadabra but
                    but
   said abrakadabra
                                 Large jumps:
                        but
                                    few comparisons
   said abrakadabra
                         but
                                 Desired running time:
                                    O(m + n/m)
                         but
```


For $c \in \Sigma$ and the pattern P let

 $\delta[c] := \text{index of the right-most occurrence of } c \text{ in } P$

$$= \max \{j \mid p_j = c\}$$

$$= \begin{cases} 0 & \text{if } c \notin P \\ j & \text{if } c = p_j \text{ and } c \neq p_k \text{ for } j < k \leq m \end{cases}$$

What is the cost for computing all δ -values? Let $|\Sigma| = l$:

BM: last-occurrence function

Let

```
c = the character causing the mismatch j = the index of the current character in the pattern (c \neq p_i)
```

Winter term 11/12 26

BM: last-occurrence function

Computation of the pattern shift

Case 1 c does not occur in P ($\delta[c] = 0$) Shift the pattern j characters to the right.

$$\Delta[i] = j$$

BM: last-occurrence function

Case 2 *c* occurs in the pattern $(\delta[c] \neq 0)$

Shift the pattern to the right until the rightmost c in the pattern is aligned with a potential c in the text.

Winter term 11/12

Case 2 a: $\delta[c] > j$

Shift the rightmost *c* in the pattern to a potential *c* in the text.

$$\Rightarrow$$
 shift by $\Delta[i] = m - \delta[c] + 1$

Case 2 b: $\delta[c] < j$

Shift the rightmost *c* in the pattern to *c* in the text.

$$\Rightarrow$$
 shift by $\Delta[i] = j - \delta[c]$


```
Algorithm BM-search1
Input: text T, pattern P
Output: all positions of P in T
1 n := length(T); m := length(P)
2 compute \delta
3 i := 0
4 while i \le n - m do
5
     j := m
     while j > 0 and P[j] = T[i + j] do
6
        j := j - 1
     end while;
```

BM: Algorithm (version 1)


```
8 if j = 0

9 then output position i

10 i := i + 1

11 else if \delta[T[i+j]] > j

12 then i := i + m + 1 - \delta[T[i+j]]

13 else i := i + j - \delta[T[i+j]]

14 end while;
```

Winter term 11/12 32

Analysis:

Desired running time: O(m + n/m)

Worst-case running time: $\Omega(n m)$

Match heuristic

Use the information collected before a mismatches $p_j \neq t_{i+j}$ occurs.

gsf[j] = position of the end of the next occurrence of the suffix $P_{j+1 \dots m}$ from the right that is not preceded by character P_j (good suffix function)

Possible shift: $\gamma[j] = m - gsf[j]$

gsf[j] = position of the end of the closest occurrence of the suffix $P_{j+1 \dots m}$ from the right that is not preceded by character P_j

pattern: banana

	inspected	forbidden	further	
gsf[j]	suffix	character	occurrence	position
gsf[5]	а	n	b <u>a</u> n <u>a</u> na	2
gsf[4]	na	а	* <u>**</u> ba <u>na</u> <u>na</u>	0
gsf[3]	ana	n	ban <u>ana</u>	4
gsf[2]	nana	а	ba <u>nana</u>	0
gsf[1]	anana	b	b <u>anana</u>	0

Winter term 11/12 35

Example of computing gsf

$$\Rightarrow$$
 gsf (banana) = [0,0,0,4,0,2]
a b a a b a b a n a n a n a n a n a \neq = = =
b a n a n a
b a n a n a


```
Algorithm BM-search2
Input: text T, pattern P
Output: shift for all occurrences of P in T
1 n := length(T); m := length(P)
2 compute \delta and \gamma
3 i := 0
4 while i \le n - m do
5
     j := m
     while j > 0 and P[j] = T[i + j] do
6
        j := j - 1
   end while;
```



```
8 if j = 0

9 then output position i

10 i := i + \gamma [0]

11 else i := i + \max(\gamma[j], j - \delta[T[i + j]])

12 end while;
```