Algorithms Theory

15 — Text search

P.D. Dr. Alexander Souza

Winter term 11/12



Text search

Various scenarios;

Dynamic texts
» Text editors
* Symbol manipulators

Static texts

» Literature databases
o Library systems
 Gene databases
 World Wide Web

Winter term 11/12 2



Text search

Data type string:

» array of character
» file of character

» list of character

Operations (let T, P be of type string)
length: length ()
I-th character : T [i]
concatenation: cat(T,P) T.P

Winter term 11/12 3



Problem definition

Given:
text tit,..t X
pattern p,p,...p, € X"

Goal:

Find one or all occurrences of the pattern in the text,
l.e. positions i (0 <1< n—m) such that

P = tiyg
P, = T
pm: ti+m

Winter term 11/12 4



Problem definition

i 1+1 I+m
text: [t; t, t,, to ... t
pattern: —> | p; P

Running time:

1. # possible alignments: n—m + 1, # pattern positions: m
- O(nm)

2. Atleast 1 comparison per m consecutive text positions:
2> Q(m+n/m)

Winter term 11/12



"

Naive method

For each possible position 0 <i < n - m, check at most m character pairs.
Whenever a mismatch occurs, shift to the next position.

textsearchbf := proc (T : : string, P : : string)

# Input:  text T, pattern P

# Output: list L of positions i, at which P occurs in T
n :=length (T); m :=length (P);
L:=[];
forifromOton-mdo

j =1,
whilej<mand T[i+]]=P[j ]
doj:=j+1 od;
ifj=m+1lthenL:=[L[],i]fi
od;
RETURN (L)
end;

Winter term 11/12



Naive method

Running time:

00 .. O .. 0..00

Worst case: Q(mn)

In practice, a mismatch usually occurs very early.

=> running time ~cn

Winter term 11/12



The Knuth-Morris-Pratt algorithm (KMP)

Lett; and p;,, be the characters to be compared:

L b

If, for a certain alignment, the first mismatch occurs for characters

t; and p;,,, then:

» the lastj characters compared in T equal the first j characters of P

* G #Pn

Winter term 11/12

Py

Pm

Y

pj+1

"



"

The Knuth-Morris-Pratt algorithm (KMP)

ldea:

Find " = next [ ] ] <] such that t; can then be compared to p;.;.
Find greatest < such that P, ; = Py, ;

Find the longest prefix of P that is a proper suffixof P ; ;.

t, t, .. t

Pr - P P41 - Pm

Winter term 11/12 9



"

The Knuth-Morris-Pratt algorithm (KMP)

Example for determining next [ ]

t; t, ...01011 01011 O
01011 01011 1
01011 01011 1

next [ ] ] = length of the longest prefix of P that is a proper suffix of P, |

Winter term 11/12 10



The Knuth-Morris-Pratt algorithm (KMP)

— for P = 0101101011, next =[0,0,1,2,0,1,2,3,4,5] :

1 2 3 4 5 6 7 8 9 10
0 1 0 1 1 0 1 0 1 1
0
0 1
0
0 1
0 1 0
0 1 0 1
0 1 0 1 1

Winter term 11/12 11



"

The Knuth-Morris-Pratt algorithm (KMP)

KMP :=proc (T : : string, P : : string)
# Input: text T, pattern P
# Output: list L of positions i at which P occursin T
n :=length(T); m :=length(P);
L := []; next:= KMPnext(P);
] = 0;
forifrom 1tondo
whilej>0and T[i]<>P[j+1]doj:=next[]j] od;
fT[i] =P[j+1] thenj:=j+1 fi,
ifj=mthenL:=[L[],I-m];
j:=next[]]
fi;
od,;
RETURN (L);
end;

Winter term 11/12 12



"

The Knuth-Morris-Pratt algorithm (KMP)

Pattern: abrakadabra, next =[0,0,0,1,0,1,0,1,2,3,4]

r brababrak..

brakadabra
1 T R I (O O
brakadabra

D —

]
next[1l1l]=4

abrakadabrabrababrak..

SR
abrak
next[4] =1

Winter term 11/12 13



"

The Knuth-Morris-Pratt algorithm (KMP)

abrakadabrabrababrak..

oL A

abrak
next[4] =1

abrakadabrabrababrak..

- |4
abrak
next[2] =0

abrakadabrabrabahb
| |
ab

Winter term 11/12 14



"

The Knuth-Morris-Pratt algorithm (KMP)

Correctness:
t, t, .. t.
j— i — j— ¢
Pp ... Pi P o Ppy

When starting the for-loop:

P, =T and | # m

ivj...i-1

If | = 0: we are located at the first character of P
iIf | # 0: P can be shifted while j > 0 and t; # p;,;

Winter term 11/12 15



"

The Knuth-Morris-Pratt algorithm (KMP)

fT[i1]=P[j+t1], jandican be increased (at the end of the loop).

If P has been compared completely (j = m), an occurrence of Pin T
has been found and we can shift to the next position.

Winter term 11/12 16



"

The Knuth-Morris-Pratt algorithm (KMP)

Running time:

» the text pointer i is never reset

» text pointer i and pattern pointer j are always incremented together
o always:next[j]<];

j can be decreased only as many times as it has been increased

If the next-array is known, the KMP algorithm runs in O(n) time.

Winter term 11/12 17



Computation of the next-array

next [i] = length of the longest prefix of P that is a
proper suffix of P;...,

next[1l] =0
Let next [i-1] = :

Pr Py - P

P -~ B Pz -+ Pm

Winter term 11/12 18



"

Computation of the next-array

Consider two cases:
1) ;= Ppg > Next[i]=]+1

2) pi# Py 2 replace jby next [ ] until pj=p;,, or |=0
If p; = p;;q, S€tNEXt[1] =] + 1, otherwise next [ 1] = 0.

Winter term 11/12 19



"

Computation of the next-array

KMPnext := proc (P : : string)
# Input: pattern P
# Output: next-array for P
m := length (P);
next := array (1.. m);
next [1] := 0;
j:=0;
for i from 2 to m do
whilej>0andP[i]<>P[j+1]
doj:=next[j] od;
fP[i]=P[j+1]thenj:=j+1fi;
next[i]:=j
od,;
RETURN (next);
end;

Winter term 11/12 20



Running time of KMP

The KMP algorithm runs in O(n + m) time.

Can text search be realized even faster?

Winter term 11/12 21



The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan the
characters from right to left rather than from left to right.

Example:

he said abrakadabra but
A

but

he said abrakadabra but

A
but

Winter term 11/12 22



"

The Boyer-Moore algorithm (BM)

he said abrakadabra but

"
but

he said abrakadabra but

¥
but

he said abrakadabra but

¥
but

Winter term 11/12 23



"

The Boyer-Moore algorithm (BM)

he said abrakadabra but

i
but

he said abrakadabra but

A
but

he said abrakadabra but

d
but Large jumps:
few comparisons
he said abrakadabra but
| | | Desired running time:
but O(m +n/m)

Winter term 11/12 24



BM: last-occurrence function

For c € ¥ and the pattern P let

0 [c] := index of the right-most occurrence of ¢ in P

=max {j | p; = c}
0 ifceg P
] ifc=pandc#p, for j<k<m

What is the cost for computing all 6-values?
Let |Z| =1I:

Winter term 11/12 25



BM: last-occurrence function

Let

c = the character causing the mismatch
] = the index of the current character in the pattern (c # p)

Winter term 11/12 26



BM: last-occurrence function

Computation of the pattern shift

Case 1 c does not occurin P (9[c] =0)
Shift the pattern j characters to the right.

|+ 1 | + | | + m
text C
Pl
pattern P,
Pm

A

Alil]= )

Winter term 11/12

27



"

BM: last-occurrence function

Case 2 c occurs in the pattern (o[c] # 0)

Shift the pattern to the right until the rightmost c in the pattern is
aligned with a potential ¢ in the text.

1+1 i+] 1+m
text c

" 11
pattern C P,

A

jk‘ - o

A

Winter term 11/12 28



BM: last-occurrence function

Case 2 a: o[c] > |

text

Shift the rightmost c in the pattern to a potential ¢ in the text.

= shift by A[i]=m —9d[c]+1

Winter term 11/12

29



BM: last-occurrence function

Case 2 b: 9[c] <]

text C
‘ L

pattern C P

5(c) i-3(c)

Shift the rightmost c in the pattern to c in the text.

= shift by A[i] = j—8[c]

Winter term 11/12 30



BM: Algorithm (version 1)

Algorithm BM-searchl

Input: textT, pattern P
Output: all positionsof Pin T
1 n:=length(T); m :=length(P)
2 compute o
31:=0

4 whilei<n-mdo
5 j:=m

6 whilej>0and P[j]=T[i+]]do
7 j=]—-1

end while;

Winter term 11/12 31



BM: Algorithm (version 1)

8 ifj=0
9 then output position i
10 l=1+1

11 elseif §[T[i+j]]>]

12 theni:=i+m+21-8[T[i+]]
13 elsei:=i+j-3[T[i+]j]

14 end while;

Winter term 11/12 32



BM: Algorithm (version 1)

Analysis:

Desired running time: O(m + n/m)
Worst-case running time:  Q(n m)

00 .. 00 ... 0 ..

—> |10 ... 0 ..

Winter term 11/12

33



Match heuristic

"

Use the information collected before a mismatches p;#t;,; occurs.

tl t2 N t|+l N tH_J N t|+m
; #+# = = =
P1 pj Pm

gsf[j] = position of the end of the next occurrence of the suffix
Pi.1 . mfrom the right that is not preceded by character P;

(good suffix function)

Possible shift: y[j] = m— gsf[j]

Winter term 11/12 34



Example of computing gsf

gsfj]] = position of the end of the closest occurrence of the suffix
Pi.1 . mfrom the right that is not preceded by character P;

pattern: banana

inspected | forbidden | further
gsf[j] suffix character | occurrence | position
gsf[5] a n banana 2
gsf[4] na a *** pbana na 0
gsf[3] ana n banana 4
gsf2] nana a banana 0
gsf[1] anana b banana 0

Winter term 11/12

"

35



Example of computing gsf

= gsf (banana) =[0,0,0,4,0,2]

abaababanananana
#$ ===
banana
banana

Winter term 11/12

36



BM: Algorithm (version 2)

Algorithm BM-search?2

Input: text T, pattern P

Output: shift for all occurrences of Pin T
1 n:=length(T); m :=length(P)
2 compute o6 and y
31:=0

4 whilei<n-mdo
5 j:=m

6 whilej>0and P[j]=T[i+j]do
7 j=]—-1

end while;

Winter term 11/12 37



BM: Algorithm (version 2)

8 ifj=0

9 then output position |

10 I:=i+vy[0]

11 elsei:=i+max(y[j], j-O[T[i+ij]])
12 end while;

Winter term 11/12 38



