
Algorithms TheoryAlgorithms Theory

115 – Text search

P.D. Dr. Alexander Souza

Winter term 11/12

Text search

Various scenarios:Various scenarios:

Dynamic texts
• Text editors
• Symbol manipulators

Static texts
• Literature databasesLiterature databases
• Library systems
• Gene databases
• World Wide Web

2Winter term 11/12

Text search

Data type string:Data type string:
• array of character
• file of character
• list of character

O ti (l t T P b f t t i)Operations (let T, P be of type string)
length: length ()
i-th character : T [i]i th character : T [i]
concatenation: cat (T, P) T.P

3Winter term 11/12

Problem definition

Given:
text t1 t2 tn ∈ Σn

pattern p1p2 ... pm ∈ Σm

Goal:
Find one or all occurrences of the pattern in the textFind one or all occurrences of the pattern in the text,
i.e. positions i (0 ≤ i ≤ n – m) such that

p1 = ti+1
p2 = ti+2

pm = ti+m

4Winter term 11/12

Problem definition

i i+1 i+m

text: t1 t2 ti+1 ti+m ….. tn

pattern: p1 pm

Running time:

1 # ibl li t + 1 # tt iti1. # possible alignments: n – m + 1, # pattern positions: m
O(n m)

2. At least 1 comparison per m consecutive text positions:
Ω (m + n/m)

5Winter term 11/12

Naive method

For each possible position 0 ≤ i ≤ n – m, check at most m character pairs.
Whenever a mismatch occurs, shift to the next position.

textsearchbf := proc (T : : string, P : : string)
Input: text T, pattern P
Output: list L of positions i, at which P occurs in T

n := length (T); m := length (P);
L []L := [];
for i from 0 to n - m do

j := 1;
while j ≤ m and T [i + j] P [j]while j ≤ m and T [i + j] = P [j]

do j := j +1 od;
if j = m +1 then L := [L [] , i] fi;

od;od;
RETURN (L)

end;

6Winter term 11/12

Naive method

Running time:Running time:

0 0 ... 0 ... 0 ... 0 0 ...
i 0 ... 0 ... 0 1

W t Ω()

i

Worst case: Ω(m n)

In practice, a mismatch usually occurs very early.In practice, a mismatch usually occurs very early.

running time ~ c n

7Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

Let ti and pj+1 be the characters to be compared:Let ti and pj+1 be the characters to be compared:

t1 t2 ti
= = = = ≠
p1 ... pj pj+1 ... pm

If, for a certain alignment, the first mismatch occurs for characters
ti and pj+1, then:ti and pj+1, then:

• the last j characters compared in T equal the first j characters of P
• ti ≠ pj+1ti ≠ pj+1

8Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

IdIdea:

Find j´ = next [j] < j such that ti can then be compared to pj´+1.Find j next [j] j such that ti can then be compared to pj +1.

Find greatest j´< j such that P1...j´ = Pj-j´+1...j.

Find the longest prefix of P that is a proper suffix of P 1 ... j .

t1 t2 ti
= = = = ≠
p1 ... pj pj+1 ... pm

9Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

Example for determining next [j]:Example for determining next [j]:

t1 t2 ... 01011 01011 0 ...
01011 01011 1

01011 01011 1

next [j] = length of the longest prefix of P that is a proper suffix of P1 jnext [j] length of the longest prefix of P that is a proper suffix of P1 ...j

10Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

⇒ for P = 0101101011, next = [0,0,1,2,0,1,2,3,4,5] :

1 2 3 4 5 6 7 8 9 10

0 1 0 1 1 0 1 0 1 1

0

0 1

0

0 1

0 1 0

0 1 0 1

11Winter term 11/12

0 1 0 1 1

The Knuth-Morris-Pratt algorithm (KMP)

KMP := proc (T : : string, P : : string)
Input: text T pattern P# Input: text T, pattern P
Output: list L of positions i at which P occurs in T

n := length(T); m := length(P);
L := []; next := KMPnext(P);
j := 0;
for i from 1 to n dofor i from 1 to n do

while j > 0 and T [i] <> P [j+1] do j := next [j] od;
if T [i] = P [j+1] then j := j+1 fi;
if j = m then L := [L[] , i-m] ;

j := next [j]
fi;fi;

od;
RETURN (L);

d

12Winter term 11/12

end;

The Knuth-Morris-Pratt algorithm (KMP)

Pattern: abrakadabra, next = [0,0,0,1,0,1,0,1,2,3,4], [, , , , , , , , , ,]

a b r a k a d a b r a b r a b a b r a k ...
| | | | | | | | | | || | | | | | | | | | |
a b r a k a d a b r a

next [11] = 4

a b r a k a d a b r a b r a b a b r a ka b r a k a d a b r a b r a b a b r a k ...
- - - - |
a b r a k
next [4] = 1

13Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

a b r a k a d a b r a b r a b a b r a k ...
- | | | |
a b r a k

t [4] 1next [4] = 1

a b r a k a d a b r a b r a b a b r a k ...
- | |
a b r a k
next [2] = 0next [2] = 0

a b r a k a d a b r a b r a b a b r a k ...
| | | | |
a b r a k

14Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

Correctness:Correctness:

t1 t2 ti

p1 ... pj pj+1 ... pm

= = = = ≠

When starting the for-loop:
P1 j = Ti j i 1 and j ≠ mP1...j Ti-j...i-1 and j ≠ m

if j = 0: we are located at the first character of P
if j ≠ 0: P can be shifted while j > 0 and ti ≠ pj+1

15Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

If T [i] = P [j+1], j and i can be increased (at the end of the loop).

If P has been compared completely (j = m), an occurrence of P in T
h b f d d hift t th t itihas been found and we can shift to the next position.

16Winter term 11/12

The Knuth-Morris-Pratt algorithm (KMP)

Running time:Running time:

• the text pointer i is never reset
• text pointer i and pattern pointer j are always incremented together
• always: next [j] < j;

j can be decreased only as many times as it has been increasedj can be decreased only as many times as it has been increased

If the next-array is known, the KMP algorithm runs in O(n) time.y g ()

17Winter term 11/12

Computation of the next-array

next [i] = length of the longest prefix of P that is anext [i] length of the longest prefix of P that is a
proper suffix of P1...i

next [1] = 0
Let next [i-1] = j :

p1 p2 pi
= = = = ≠

p1 ... pj pj+1 ... pm

= = = = ≠

18Winter term 11/12

Computation of the next-array

Consider two cases:Consider two cases:

1) pi = pj+1 next [i] = j + 1

2) pi ≠ pj+1 replace j by next [j] until pi = pj+1 or j = 0
If t t [i] j + 1 th i t [i] 0If pi = pj+1, set next [i] = j + 1, otherwise next [i] = 0.

19Winter term 11/12

Computation of the next-array

KMPnext := proc (P : : string)
Input: pattern P
Output: next-array for P

m := length (P);
next := array (1.. m);
next [1] := 0;
j := 0;j
for i from 2 to m do

while j > 0 and P [i] <> P [j+1]
do j := next [j] od;do j : next [j] od;

if P [i] = P [j+1] then j := j+1 fi;
next [i] := j

od;od;
RETURN (next);

end;

20Winter term 11/12

Running time of KMP

The KMP algorithm runs in O(n + m) time.

Can text search be realized even faster?

21Winter term 11/12

The Boyer-Moore algorithm (BM)

Idea: For any alignment of the pattern with the text, scan they g p ,
characters from right to left rather than from left to right.

Example:

h e s a i d a b r a k a d a b r a b u t
|

b u tb u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

22Winter term 11/12

The Boyer-Moore algorithm (BM)

h e s a i d a b r a k a d a b r a b u th e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
||

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

23Winter term 11/12

The Boyer-Moore algorithm (BM)

h e s a i d a b r a k a d a b r a b u t
||

b u t

h e s a i d a b r a k a d a b r a b u th e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t
|

b u t

h e s a i d a b r a k a d a b r a b u t

Large jumps:
few comparisons

h e s a i d a b r a k a d a b r a b u t
| | |
b u t

Desired running time:
O(m + n /m)

24Winter term 11/12

BM: last-occurrence function

For c ∈ Σ and the pattern P letFor c ∈ Σ and the pattern P let

δ [c] := index of the right-most occurrence of c in P

= max {j | pj = c}

⎧
=
⎩
⎨
⎧

≤<≠=
∉

mkjpc pc j
Pc

k j for and if
if0

What is the cost for computing all δ-values?
Let |Σ| = l:

25Winter term 11/12

BM: last-occurrence function

LetLet

c = the character causing the mismatch
j = the index of the current character in the pattern (c ≠ pj)

26Winter term 11/12

BM: last-occurrence function

Computation of the pattern shiftComputation of the pattern shift

Case 1 c does not occur in P (δ[c] = 0)
Shift the pattern j characters to the right.

t t
i + 1 i + j i + m

text c

pattern pj

| | |
pattern pj

pm

ji =Δ][

27Winter term 11/12

BM: last-occurrence function

Case 2 c occurs in the pattern (δ[c] ≠ 0)Case 2 c occurs in the pattern (δ[c] ≠ 0)
Shift the pattern to the right until the rightmost c in the pattern is
aligned with a potential c in the text.

text
i + 1 i + j i + m

c

pattern c pj

| | |k
p pj

c pm
j - k

28Winter term 11/12

BM: last-occurrence function

Case 2 a: δ[c] > jCase 2 a: δ[c] j

text c c

pattern pj c

4444 34444 21
(c)

δ no c

Shift the rightmost c in the pattern to a potential c in the text.

1δ[]Δ[i]bhift 1δ[c]mΔ[i]by shift +−=⇒

29Winter term 11/12

BM: last-occurrence function

Case 2 b: δ[c] < jCase 2 b: δ[c] j

text c

pattern c pj
3131

Shift the rightmost c in the pattern to c in the text.

4342143421
)((c) cj δδ −

Shift the rightmost c in the pattern to c in the text.

δ[c]jΔ[i]by shift −=⇒

30Winter term 11/12

BM: Algorithm (version 1)

Algorithm BM-search1Algorithm BM search1
Input: text T, pattern P
Output: all positions of P in T
1 n := length(T); m := length(P)
2 compute δ
3 i 03 i := 0
4 while i ≤ n – m do
5 j := m5 j : m
6 while j > 0 and P [j] = T [i + j] do
7 j := j – 1

end while;

31Winter term 11/12

BM: Algorithm (version 1)

8 if j = 0
9 then output position i
10 i := i + 1
11 else if δ[T[i + j]] > j
12 th i i + + 1 δ[T[i + j]]12 then i := i + m + 1 - δ[T[i + j]]
13 else i := i + j - δ[T[i + j]]
14 end while;14 end while;

32Winter term 11/12

BM: Algorithm (version 1)

Analysis:Analysis:

Desired running time: O(m + n/m)
Worst-case running time: Ω(n m)

i

0 0 ... 0 0 ... 0 ... 0 ...

1 0 ... 0 ... 0

33Winter term 11/12

Match heuristic

Use the information collected before a mismatches pj ≠ ti + j occurs.Use the information collected before a mismatches pj ≠ ti + j occurs.

i

t1 t2 ... ti+1 ... ti+j ... ti+m

≠ = = =

gsf[j] = position of the end of the next occurrence of the suffix

p1 ... pj ... pm
i

gsf[j] position of the end of the next occurrence of the suffix
Pj+1 ... m from the right that is not preceded by character Pj

(good suffix function)

Possible shift: γ[j] = m – gsf[j]

34Winter term 11/12

Example of computing gsf

gsf[j] = position of the end of the closest occurrence of the suffix
P f h i h h i d d b h PPj+1 ... m from the right that is not preceded by character Pj

pattern: bananapattern: banana

gsf[j]
inspected
suffix

forbidden
character

further
occurrence positiongsf[j] suffix character occurrence position

gsf[5] a n banana 2

gsf[4] na a *** bana na 0gsf[4] na a bana na 0

gsf[3] ana n banana 4

f[2] b 0gsf[2] nana a banana 0

gsf[1] anana b banana 0

35Winter term 11/12

Example of computing gsf

gsf (banana) = [0,0,0,4,0,2]⇒

a b a a b a b a n a n a n a n a
≠ = = =

b a n a n a
b a n a n ab a n a n a

36Winter term 11/12

BM: Algorithm (version 2)

Algorithm BM-search2Algorithm BM search2
Input: text T, pattern P
Output: shift for all occurrences of P in T
1 n := length(T); m := length(P)
2 compute δ and γ
3 i 03 i := 0
4 while i ≤ n – m do
5 j := m5 j : m
6 while j > 0 and P [j] = T [i + j] do
7 j := j – 1

end while;

37Winter term 11/12

BM: Algorithm (version 2)

8 if j = 0
9 then output position i
10 i := i + γ [0]
11 else i := i + max(γ [j], j - δ[T [i + j]])
12 d hil12 end while;

38Winter term 11/12

