
Chapter 6

Satisfiability

The Satisfyability problem asks if a certain given Boolean formula has a satisfying
assignment, i.e., one that makes the whole formula evaluate to true. There is a related
optimization problem called Maximum Satisfiability. The goal of this chapter is to
develop a deterministic 3/4-approximation algorithm. We first give a corresponding ran-
domized algorithm which will then be derandomized.

We are given the Boolean variables X = {x1, . . . , xn}, where each xi ∈ {0, 1}. A literal

ℓi of the variable xi is either xi itself, called a positive literal, or its negation x̄i with truth
value 1−xi, called a negative literal. A clause is a disjunction C = (ℓ1∨· · ·∨ℓk) of literals
ℓj of X; their number k is called the size of C. For a clause C let S+

C denote the set of its
positive literals; similarly S−C the set of its negative literals. Let C denote the set of clauses.
A Boolean formula in conjunctive form is a conjunction of clauses F = C1∧· · ·∧Cm. Each
vector x ∈ {0, 1}n is called a truth assignment. For any clause C and any such assignment
x we say that x satisfies C if at least one of the literals of C evaluates to 1.

The problem Maximum Satisfiability is the following: We are given a formula F
in conjunctive form and for each clause C a weight wC , i.e., a weight function w : C → N.
The objective is to find a truth assignment x ∈ {0, 1}n that maximizes the total weight of
the satisfied clauses. As an important special case: If we set all weights wC equal to one,
then we seek to maximize the number of satisfied clauses.

Now we introduce for each clause C a variable zC ∈ {0, 1} which takes the value one if
and only if C is satisfied under a certain truth assignment x. Now we can formulate this
problem as a mathematical program as follows:

Problem 6.1 Maximum Satisfiability

Instance. Formula F = C1 ∧ · · · ∧ Cm with m clauses over the n Boolean variables
X = {x1, . . . , xn}. A weight function w : C → N.

Task. Solve the problem

maximize val(z) =
∑

C∈C

wCzC ,

subject to
∑

i∈S+

C

xi +
∑

i∈S−
C

(1− xi) ≥ zC C ∈ C,

zC ∈ {0, 1} C ∈ C,
xi ∈ {0, 1} i = 1, . . . , n.

45

The algorithm we aim for is a combination of two algorithms. One works better
for small clauses, the other for large clauses. Both are initially randomized but can be
derandomized using the method of conditional expectation, i.e., the final algorithm is
deterministic.

6.1 Randomized Algorithm

For each variable xi we define the random variable Xi that takes the value one with a
certain probability pi and zero otherwise. This induces, for each clause C, a random
variable ZC that takes the value one if C is satisfied under a (random) assignment and
zero otherwise.

Algorithm for Large Clauses

Consider this algorithm Randomized Large: For each variable xi with i = 1, . . . , n,
set Xi = 1 independently with probability 1/2 and Xi = 0 otherwise. Output X =
(X1, . . . , Xn).

Define the quantity
αk = 1− 2−k.

Lemma 6.1. Let C be a clause. If size(C) = k then

E [ZC] = αk.

Proof. A clause C is not satisfied, i.e., ZC = 0 if and only if all its literals are set to zero.
By independence, the probability of this event is exactly 2−k and thus

E [ZC] = 1 · Pr [ZC = 1] + 0 · Pr [ZC = 0] = 1− 2−k = αk

which was claimed.

Theorem 6.2. In expectation, the algorithm Randomized Large is a 1/2-approximation

algorithm for Maximum Satisfiability.

Proof. By linearity of expectation, Lemma 6.1, and size(C) ≥ 1 we have

E [val(Z)] =
∑

C∈C

wCE [ZC] =
∑

C∈C

wCαsize(C) ≥
1

2

∑

C∈C

wC ≥
1

2
val(z∗)

where (x∗, z∗) is an optimal solution for Maximum Satisfiability. We have used the
obvious bound val(z∗) ≤

∑

C∈C wC .

Algorithm for Small Clauses

Maybe the most natural linear programming relaxation of the problem is:

maximize val(z) =
∑

C∈C

wCzC ,

subject to
∑

i∈S+

C

xi +
∑

i∈S−
C

(1− xi) ≥ zC C ∈ C,

0 ≤ zC ≤ 1 C ∈ C
0 ≤ xi ≤ 1 i = 1, . . . , n.

46

In the sequel let (x̄, z̄) denote an optimum solution for this LP.
Consider this algorithm Randomized Small: Determine (x̄, z̄). For each variable xi

with i = 1, . . . , n, set Xi = 1 independently with probability x̄i and Xi = 0 otherwise.
Output X = (X1, . . . , Xn).

Define the quantity

βk = 1−
(

1− 1

k

)k

.

Lemma 6.3. Let C be a clause. If size(C) = k then

E [ZC] = βkz̄C .

Proof. We may assume that the clause C has the form C = (x1 ∨ · · · ∨ xk); otherwise
rename the variables and rewrite the LP.

The clause C is satisfied if x1, . . . , xk are not all set to zero. The probability of this
event is

1−Πk
i=1(1− x̄i) ≥ 1−

(

∑k
i=1(1− x̄i)

k

)k

= 1−
(

1−
∑k

i=1 x̄i

k

)k

≥ 1−
(

1− z̄C

k

)k

.

Above we firstly have used the arithmetic-geometric mean inequality, which states that
for non-negative numbers a1, . . . , ak we have

a1 + · · ·+ ak

k
≥ k
√

a1 · · · · · ak.

Secondly the LP guarantees the inequality x̄1 + · · ·+ x̄k ≥ z̄C .
Now define the function g(t) = 1− (1− t/k)k. This function is concave with g(0) = 0

and g(1) = 1− (1− 1/k)k which yields that we can bound

g(t) ≥ t(1− (1− 1/k)k) = tβk

for all t ∈ [0, 1].
Therefore

Pr [ZC = 1] ≥ 1−
(

1− z̄C

k

)k

≥ βkz̄C

and the claim follows.

Theorem 6.4. In expectation, the algorithm Randomized Small is a 1−1/e-approximation

algorithm for Maximum Satisfiability.

Proof. The function βk is decreasing with k. Therefore if all clauses are of size at most k,
then by Lemma 6.3

E [val(Z)] =
∑

C∈C

wCE [ZC] ≥ βk

∑

C∈C

wC z̄C = βkval(z̄) ≥ βkval(z∗),

where (x∗, z∗) is an optimal solution for Maximum Satisfiability. The claim follows
since (1− 1/k)k < 1/e for all k ∈ N.

47

3/4-Approximation Algorithm

Consider the algorithm Randomized Combine: With probability 1/2 run Randomized

Large otherwise run Randomized Small.

Lemma 6.5. Let C be a clause, then

E [ZC] ≥ 3z̄C

4
.

Proof. Let the random variable B take the value zero if the first algorithm is run, one
otherwise. For a clause C let size(C) = k. By Lemma 6.1 and z̄C ≤ 1

E [ZC | B = 0] = αk ≥ αkz̄C .

and by Lemma 6.1
E [ZC | B = 1] ≥ βkz̄C .

Combining we have

E [ZC] = E [ZC | B = 0]Pr [B = 0] + E [ZC | B = 1]Pr [B = 1] ≥ z̄C

2
(αk + βk).

Inspection shows that αk + βk ≥ 3/2 for all k ∈ N.

Theorem 6.6. In expectation, the algorithm Randomized Combine is a 3/4-approximation

algorithm for Maximum Satisfiability.

Proof. This follows from Lemma 6.5 and linearity of expectation.

6.2 Derandomization

The notion of derandomization refers to “turning” a randomized algorithm into a deter-
ministic one (possibly at the cost of additional running time or deterioration of approxi-
mation guarantee). One of the several available techniques is the method of conditional

expectation.
We are given a Boolean formula F = C1∧· · ·∧Cm in conjunctive form over the variables

X = {x1, . . . , xn}. Suppose we set x1 = 0, then we get a formula F0 over the variables
x2, . . . , xn after simplification; if we set x1 = 1 then we get a formula F1.

Example 6.7. Let F = (x1 ∨ x2) ∧ (x̄1 ∨ x3) ∧ (x1 ∨ x̄4) where X = {x1, . . . , x4}.

x1 = 0 : F0 = (x2) ∧ (x4)

x1 = 1 : F1 = (x3)

Applying this recursively, we obtain the tree T (F) depicted in Figure 6.1. The tree
T (F) is a complete binary tree with height n+1 and 2n+1−1 vertices. Each vertex at level i
corresponds to a setting for the Boolean variables x1, . . . , xi. We label the vertices of T (F)
with their respective conditional expectations as follows. Let X1 = a1, . . . , Xi = ai ∈ {0, 1}
be the outcome of a truth assignment for the variables x1, . . . , xi. The vertex corresponding
to this assignment will be labeled

E [val(Z) | X1 = a1, . . . , Xi = ai] .

48

F

F0 F1

x1 = 0 x1 = 1

T (F)

T (F0) T (F1)

level 0

level 1

Figure 6.1: Derandomization tree for a formula F .

If i = n, then this conditional expectation is simply the total weight of clauses satisfied by
the truth assignment x1 = a1, . . . , xn = an.

The goal of the remainder of the section is to show that we can find deterministically
in polynomial time a path from the root of T (F) to a leaf such that the conditional
expectations of the vertices on that path are at least as large as E [val(Z)]. Obviously, this
property yields the desired: We can construct determistically a solution which is at least
as good as the one of the randomized algorithm in expectation.

Lemma 6.8. The conditional expectation

E [val(Z) | X1 = a1, . . . , Xi = ai]

of any vetex in T (F) can be computed in polynomial time.

Proof. Consider a vertex X1 = a1, . . . , Xi = ai. Let F ′ be the Boolean formula obtained
from F by setting x1, . . . , xi accordingly. F ′ is in the variables xi+1, . . . , xn.

Clearly, by linearity of expectation, the expected weight of any clause of F ′ under any
random truth assignment to the variables xi+1, . . . , xn can be computed in polynomial
time. Adding to this the total weight of clauses satisfied by x1, . . . , xi gives the answer.

Theorem 6.9. We can compute in polynomial time a path from the root to a leaf in T (F)
such that the conditional expectation of each vertex on this path is at least E [val(Z)].

Proof. Consider the conditional expectation at a certain vertex X1 = a1, . . . , Xi = ai for
setting the next variable Xi+1. We have that

E [val(Z) | X1 = a1, . . . , Xi = ai]

= E [val(Z) | X1 = a1, . . . , Xi = ai, Xi+1 = 0]Pr [Xi+1 = 0]

+ E [val(Z) | X1 = a1, . . . , Xi = ai, Xi+1 = 1]Pr [Xi+1 = 1] .

We show that the two conditional expectations with Xi+1 can not be both strictly smaller
than E [val(Z) | X1 = a1, . . . , Xi = ai]. Assume the contrary, then we have

E [val(Z) | X1 = a1, . . . , Xi = ai]

< E [val(Z) | X1 = a1, . . . , Xi = ai] (Pr [Xi+1 = 0] + Pr [Xi+1 = 1])

which is a contradiction since Pr [Xi+1 = 0] + Pr [Xi+1 = 1] = 1.
This yields the existence of such a path can by Lemma 6.8 it can be computed in

polynomial time.

The derandomized version of a randomized algorithm now simply executes these proofs
with the probability distribution as given by the randomized algorithm.

49

