Sparsifying Congested Cliques and Core-Periphery Networks

Core-periphery networks

A novel network architecture for parallel and distributed computing, inspired by social networks and complex systems, proposed by Avin, Borokhovicha, Lotker, and Peleg [2].

A core-periphery network G = (V, E) has its node set partitioned into a *core* C and a *periphery P*, and satisfies the following axioms:

- Core boundary
- Clique emulation
- Periphery-core convergecast

Core boundary

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 $-\bigcirc$

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

()

Clique emulation

The core can emulate the clique in a constant number of rounds in the CONGEST model. That is, there is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in C$ has a message $M_{v,w}$ on $O(\log n)$ bits for every $w \in C$, then, after O(1) rounds, every $w \in C$ has

Tradeoff between edges and rounds

- ▶ Let $n \ge 1$, and $k \ge 3$. There is an *n*-node graph with $\frac{k-2}{(k-1)^2} n^2$ edges that can emulate the n-node clique in k rounds. Also, there is an *n*-node graph with $\frac{1}{3}n^2$ edges that can emulate the *n*-node clique in 2 rounds.
- ▶ Let $n \ge 1$, $k \in \{1, ..., n-1\}$, and let *G* be an *n*-node graph that can emulate the *n*-node clique in k rounds. Then G has at least $\frac{n(n-1)}{k+1}$ edges.

Other graphs that can emulate the clique

Let $c \ge 0$, $n \ge 1$, $\alpha = \sqrt{(3+c)e/(e-2)}$ where e is the base of the natural logarithm, and $p \ge \alpha \sqrt{\ln n/n}$. For $G \in \mathcal{G}_{n,p}$, $\Pr[G$ can emulate K_n in $O(\min\{\frac{1}{n^2}, np\})$ rounds $] \ge 1 - O(\frac{1}{n^{1+c}})$

Finding a routing schema for $G \in \mathcal{G}_{n,p}$:

- **1.** Process each sender sequentially
- **2.** Consider the sender *i*, the receiver *i* and the set of paths $\{(i,k,j) \mid \{i,k\} \in E \land \{k,j\} \in E\}$
- **3.** Create *r* sets of *d* paths, chosen uniformly at random
- **4.** For each set, choose the path (i,k,j) where the load of (i,k) is minimum
- 5. Among the chosen paths, choose the path (i, k, j) where the load of (k, j) is minimum
- **6.** Increase the load of (i, k) and (k, j)

Periphery-core convergecast

There is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in P$ has a message M_v on $O(\log n)$ bits, then, after O(1) rounds, for every $v \in P$, at least one node in the core has received M_v .

Using 2 rounds to emulate the clique

Consider the Johnson graph J(n,3), where n = |V|. There exists an Independent Set of size $\lfloor \frac{1}{n} \binom{n}{3} \rfloor$. It can be determined by finding k maximizing $|I_k|$, where $I_k = \{\{x, y, z\} \in V(J(n, 3)) \mid x + y + z \equiv k \pmod{n}\}$. For each triple in I_k one arbitrary edge can be removed, removing in total about $\frac{1}{3}$ of the edges.

Using more rounds to emulate the clique

Consider a bipartite graph with *a* nodes on one side and *b* on the other side, divided in groups of a nodes. The message of $b_{i,i}$ is routed to $b_{i',i'}$ via node a_k where $j + j' + k \equiv 0$

Idea: analyze separately senders and receivers assuming that the choices of the other side are adversarial, using $d = \ln n$, $r = (c+3) n^{\epsilon} \ln n$ for $\epsilon = -\ln(1 - \frac{1}{c^{4+\epsilon}})$ and techniques similar to [4].

Minimum Spanning Tree

Algorithm:

- **1.** Each node sends towards the core its minimum weight outgoing edge.
- **2.** By Axiom 1 each node $v \in C$ received $O(\sqrt{n})$ edges.
- **3.** Each node $v \in C$ keeps only one edge for each fragment, the lightest.
- **4.** Group edges by their starting fragment (there are $O(\sqrt{n})$ edges per group).
- **5.** Keep only the lightest edge of each group.
- **6.** The remaining edges form components composed by a tree and a 2–cycle, every node of the tree should know the id of the root (the node in the 2-cycle with smallest id), that will be the id of the new fragment.
- 7. Group edges by their ending fragments.
- 8. Do pointer jumping, each node $v \in C$ has to send and receive $O(\sqrt{n})$ messages.
- **9.** Repeat $\lceil \log n \rceil$ times

	(5)	11 (1	0	23 (1	6)	(1	3)
	10		30		3	2	29
	9	17	1)	1	2)	7	3
)	12	18	21	4	5	6	28
	14	19	3)—	20	4)	27 (1	1
		24	16		15	25	8
	8	13	2	14	7	(1	5

Step $1,2$ and 3				St	Step 4 and 5				Step 6 and 7			5	Step 8				Step 6, 7 and			
1	5	8	9	1	1	2	1		1	2	1		1	2	1		1	2	1	
	10	5	11		2	1	1			1	2			1	1			1	1	
	9	5	10		3	2	4			3	2			3	1			3	1	
	1	2	1		4	2	5			4	2			4	1			4	1	
2	16	2	3	2	5	8	9	-	2	6	2		2	6	1	-	2	6	1	
	13	2	2		6	2	7			11	2			11	1			11	1	
	6	2	7		7	12	14			13	2			13	1			13	1	
	2	1	1		8	5	9			16	2			16	1			16	1	
3	14	9	12	3	9	5	10	-	3	8	5		3	8	5	-	3	15	1	
	8	5	9		10	5	11			9	5			9	5			8	5	
	12	8	13		11	2	6			10	5			10	5			9	5	
	3	2	4		12	8	13			5	8			5	5	_		10	5	
4	11	2	6	4	13	2	2	-	4	12	8		4	12	5	-	4	5	5	
	15	11	8		14	9	12			14	9			14	5			12	5	
	7	12	14		15	11	8			15	11			15	2			14	5	
	4	2	5		16	2	3			7	12			7	8			7	5	

Step 1 and 2 Step 3 Step 4

(mod *a*) in round i' - i.

25								•			
17	1	5	1	17		1	1	5	17		
17		1	5	17			1	5	23	Ste	эр
23	2	1	5	23	-		1	5	16	1	1
24	3	5	1	16	-		1	5	15	2	5
16		1	5	16		2	5	1	17		
16	4	1	5	15	-		5	1	16		
15		5	1	15			5	1	15		
15											

5 15

1 15

In order to find the root of a tree it could be necessary to perform $O(\log n)$ steps of pointer jumping, giving a $O(\log^2 n)$ algorithm. This process can be amortized on multiple phases, i.e. performing a constant number of pointer jumps at each phase. One step of pointer jumping can be executed in O(1) using Lenzen routing protocol [3]. The grouping parts can be performed in O(1) rounds using Lenzen sorting protocol. The result is a deterministic $O(\log n)$ rounds algorithm.

References

- [1] A. Balliu, P. Fraigniaud, Z. Lotker and D. Olivetti. Sparsifying Congested Cliques and Core-Periphery Networks. SIROCCO, 2016.
- [2] C. Avin, M. Borokhovich, Z. Lotker, and D. Peleg. Distributed computing on core-periphery networks: Axiom-based design. In ICALP (2), volume 8573 of Lecture Notes in Computer Science, pages 399–410. Springer, 2014.
- [3] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In PODC, pages 42–50. ACM, 2013.
- [4] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.

Dennis Olivetti dennis.olivetti@gssi.infn.it, dennis@liafa.univ-paris-diderot.fr **Gran Sasso Science Institute**