
Sparsifying Congested Cliques and Core-Periphery Networks

Core-periphery networks

A novel network architecture for parallel
and distributed computing, inspired by
social networks and complex systems,
proposed by Avin, Borokhovicha, Lotker,
and Peleg [2].
A core-periphery network G = (V, E) has
its node set partitioned into a core C and
a periphery P, and satisfies the following
axioms:

I Core boundary
I Clique emulation
I Periphery-core convergecast

Core boundary

For every node v ∈ C, degC(v) ' degP(v),
where, for S ⊆ V and v ∈ V, degS(v)
denotes the number of neighbors of v in
S.

Clique emulation

The core can emulate the clique in
a constant number of rounds in the
CONGEST model. That is, there is
a communication protocol running in
a constant number of rounds in the
CONGEST model such that, assuming
that each node v ∈ C has a message
Mv,w on O(log n) bits for every w ∈ C,
then, after O(1) rounds, every w ∈ C has
received all messages Mv,w, for all v ∈ C.

Periphery-core convergecast

There is a communication protocol
running in a constant number of rounds
in the CONGEST model such that,
assuming that each node v ∈ P has a
message Mv on O(log n) bits, then, after
O(1) rounds, for every v ∈ P, at least one
node in the core has received Mv.

x 2

Using 2 rounds to emulate the clique

Consider the Johnson graph J(n, 3), where n = |V|. There exists an Independent Set of
size d1

n(
n
3)e. It can be determined by finding k maximizing |Ik|, where

Ik = {{x, y, z} ∈ V(J(n, 3)) | x + y + z ≡ k (mod n)}. For each triple in Ik one arbitrary edge
can be removed, removing in total about 1

3 of the edges.

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}

m
(5, 3)

round 1 round 1round 2 round 2

5

2 3

m
(3, 2)

m
(2, 3)

m
(3, 5)

m
(5
, 2
)

m
(2
, 3
)

m
(2
, 5
)

m
(3
, 2
)

1

2

34

5

Using more rounds to emulate the clique

Consider a bipartite graph with a nodes on one side and b on the other side, divided in
groups of a nodes. The message of bi,j is routed to bi′,j′ via node ak where j + j′ + k ≡ 0
(mod a) in round i′ − i.

b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0

Tradeoff between edges and rounds

I Let n ≥ 1, and k ≥ 3. There is an
n-node graph with k−2

(k−1)2 n2 edges

that can emulate the n-node clique
in k rounds. Also, there is an
n-node graph with 1

3n2 edges that
can emulate the n-node clique in 2
rounds.

I Let n ≥ 1, k ∈ {1, . . . , n− 1}, and let
G be an n-node graph that can
emulate the n-node clique in k
rounds. Then G has at least n(n−1)

k+1
edges.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25

Fr
a
ct

io
n

 o
f

e
d

g
e
s

Number of rounds

Upper bound
Lower bound

Other graphs that can emulate the clique

Let c ≥ 0, n ≥ 1, α =
√
(3 + c)e/(e− 2) where e is the base of the natural logarithm, and

p ≥ α
√

ln n/n. For G ∈ Gn,p, Pr[G can emulate Kn in O(min{ 1
p2 , np}) rounds] ≥ 1−O(1

n1+c)

Finding a routing schema for G ∈ Gn,p:

1. Process each sender sequentially
2. Consider the sender i, the receiver

j and the set of paths
{(i, k, j) | {i, k} ∈ E∧ {k, j} ∈ E}

3. Create r sets of d paths, chosen
uniformly at random

4. For each set, choose the path
(i, k, j) where the load of (i, k) is
minimum

5. Among the chosen paths, choose
the path (i, k, j) where the load of
(k, j) is minimum

6. Increase the load of (i, k) and (k, j)

5 3 4 7

2 1

· · ·

· · ·

· · ·

Idea: analyze separately senders and receivers assuming that the choices of the other
side are adversarial, using d = ln n, r = (c + 3) nε ln n for ε = − ln(1− 1

e4+c) and
techniques similar to [4].

Minimum Spanning Tree

Algorithm:

1. Each node sends towards the core its
minimum weight outgoing edge.

2. By Axiom 1 each node v ∈ C received
O(
√

n) edges.
3. Each node v ∈ C keeps only one edge for

each fragment, the lightest.
4. Group edges by their starting fragment

(there are O(
√

n) edges per group).
5. Keep only the lightest edge of each group.
6. The remaining edges form components

composed by a tree and a 2−cycle, every
node of the tree should know the id of the
root (the node in the 2−cycle with smallest
id), that will be the id of the new fragment.

7. Group edges by their ending fragments.
8. Do pointer jumping, each node v ∈ C has to

send and receive O(
√

n) messages.
9. Repeat dlog ne times

24

27

21 28

30 29

22

23

25

11

7

15

13

8

10

12 5

3

14

1

4
9

2

6

19

17

16

20

18

105

14

9

8 712

3

1

16 13

6

4

2

15

11

24

2

3 4

5 10 16 13

11

69

8 12 7 15

27

21 28

30 29

22

23

25

1

14

11

7

15

13

8

10

12 5

3

14

1

4
9

2

6

19

17

16

20

18

Step 1,2 and 3

1 5 8 9
10 5 11
9 5 10
1 2 1

2 16 2 3
13 2 2
6 2 7
2 1 1

3 14 9 12
8 5 9

12 8 13
3 2 4

4 11 2 6
15 11 8
7 12 14
4 2 5

Step 4 and 5

1 1 2 1
2 1 1
3 2 4
4 2 5

2 5 8 9
6 2 7
7 12 14
8 5 9

3 9 5 10
10 5 11
11 2 6
12 8 13

4 13 2 2
14 9 12
15 11 8
16 2 3

Step 6 and 7

1 2 1
1 2
3 2
4 2

2 6 2
11 2
13 2
16 2

3 8 5
9 5

10 5
5 8

4 12 8
14 9
15 11
7 12

Step 8

1 2 1
1 1
3 1
4 1

2 6 1
11 1
13 1
16 1

3 8 5
9 5

10 5
5 5

4 12 5
14 5
15 2
7 8

Step 6, 7 and 8

1 2 1
1 1
3 1
4 1

2 6 1
11 1
13 1
16 1

3 15 1
8 5
9 5

10 5
4 5 5

12 5
14 5
7 5

24

1

1 1

5 5 1 1

1

15

5 5 5 1

27

21 28

30 29

22

23

25

1

5

11

7

15

13

8

10

12 5

3

14

1

4
9

2

6

19

17

16

20

18

Step 1 and 2

1 5 1 23
5 1 17
1 5 17

2 1 5 23
3 5 1 24

5 1 16
1 5 16

4 1 5 15
5 1 15

Step 3

1 5 1 17
1 5 17

2 1 5 23
3 5 1 16

1 5 16
4 1 5 15

5 1 15

Step 4

1 1 5 17
1 5 23
1 5 16
1 5 15

2 5 1 17
5 1 16
5 1 15

Step 5

1 1 5 15
2 5 1 15

In order to find the root of a tree it could be necessary to perform O(log n) steps of
pointer jumping, giving a O(log2 n) algorithm. This process can be amortized on
multiple phases, i.e. performing a constant number of pointer jumps at each phase.
One step of pointer jumping can be executed in O(1) using Lenzen routing protocol [3].
The grouping parts can be performed in O(1) rounds using Lenzen sorting protocol. The
result is a deterministic O(log n) rounds algorithm.

References

[1] A. Balliu, P. Fraigniaud, Z. Lotker and D. Olivetti. Sparsifying Congested Cliques and Core-Periphery Networks. SIROCCO, 2016.

[2] C. Avin, M. Borokhovich, Z. Lotker, and D. Peleg. Distributed computing on core-periphery networks: Axiom-based design. In ICALP (2), volume 8573 of Lecture Notes in Computer
Science, pages 399–410. Springer, 2014.

[3] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In PODC, pages 42–50. ACM, 2013.

[4] M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.

Dennis Olivetti
dennis.olivetti@gssi.infn.it, dennis@liafa.univ-paris-diderot.fr
Gran Sasso Science Institute

