Distributed Edge Coloring in Time
Quasi-Polylogarithmic 1n Delta

Alkida Balliu, Fabian Kuhn, Dennis Olivetti
University of Freiburg, Germany

LOCAL model

» Undirected simple graph G = (V, E) of n nodes and
maximum degree A ‘/‘
e Each node has a unique ID @ W & 2 o

o
* Synchronous message passing model ’ L

* Unbounded computation

AN
e Unbounded bandwidth
O

* Focus on locality: time = number of rounds = distance

LOCA
Lm
odel:
l: symmetry b
reakin
g

A ffk‘ L]
’@ \ @ (=2 @ ()
W o=t b/ 2

&
. Q“‘

= é/\ 76
LRV

Four classical problems

Maximal ¢ (A + 1)-vertex
independent set coloring

O\ VAN

Maximal (2A - 1)-edge
matching coloring

Four classical problems

These problems can be solved in poly(log n) rounds [Rozhon, Ghaffari "20]

Maximal ¢ (A + 1)-vertex
independent set coloring

O\ VAN

Maximal (2A - 1)-edge
matching coloring

But, how local are these problems?

Four classical problems: locality

| Maximal O(A + log* n) Q(min{A,logn/loglogn}) Q(log* n)
independent set [Barenboim, Elkin, Kuhn '09] [Balliu et al. *19] [Linial "87]

Four classical problems: locality

| Maximal O(A + log* n) Q(min{A,logn/loglogn}) Q(log™ n)
independent set [Barenboim, Elkin, Kuhn '09] [Balliu et al. *19] [Linial "87]
Maximal O(A + log* n) Q(min{A,logn/loglogn}) Q(log™ n)

matching [Panconesi, Rizzi *01] [Balliu et al. "19] [Linial "87]

Four classical problems: locality

Maximal
iIndependent set

Maximal
matching

(A + 1)-vertex
coloring

O(A + log™ n) Q(min{A,logn/loglogn}) Q(log™n)
[Barenboim, Elkin, Kuhn ’09] [Balliu et al. ’19] [Linial '87]
O(A + log™ n) Q(min{A,logn/loglogn}) Q(log™n)
[Panconesi, Rizzi ’01] [Balliu et al. ’19] [Linial '87]
O(VA +log* n) Q(log™ n)

[FHK ’16][BEG *18][MT '20] [Linial "87]

Four classical problems: locality

| Maximal O(A + log* n) Q(min{A,logn/loglogn}) (log™ n)
independent set [Barenboim, Elkin, Kuhn '09] [Balliu et al. *19] [Linial "87]
I\/Iaximal O(A + log* n) Q(min{A,logn/loglogny}) (log” n)
matching [Panconesi, Rizzi *01] [Balliu et al. "19] [Linial "87]

(A + 1|)—\(ertex 5(@ + log* n) Q(log™ n)
Coloring [FHK *16][BEG *18][MT *20] [Linial *87]

(2A - 1)-edge 90 (VIog &) | O(log™ n) Q(log™ n)

coloring (Kuhn *20] [Linial *87]

Four classical problems: locality

- (ZAC éll)r_iﬁgge 20(VIgR) | O(log* n) Q(log" n)

[Kuhn *20] [Linial ’87]

Edge coloring: state of the art

* (2A -1)-edge coloring (achieved through (A + 1)-vertex coloring):
* O(A +log* n) [Barenboim, Elkin '09], [Kuhn "09]
e O(A%4+ log* n) [Barenboim "15]

» O(VA + log* n) [Fraigniaud, Heinrich, Kosowski "16] [Barenboim, Elkin,
Goldenberg 18] [Maus, Tonoyan '20]

* O(A)-edge coloring: O(A¢ + log* n) [Barenboim, Elkin "10]

e (2/A-1)-edge coloring in 20leg 4) + O(log* n) [Kuhn "20]

Our result

(2A - 1)—.edge 90(log” log A) O(log™ n) (Y(log™ n)
coloring [this paper] [Linial *87]

Our result

(deg(e) + 1)-list edge coloring can be solved in time quasi-polylogarithmic in A

(2A - 1)—.edge 90(log” log A) O(log™ n) (Y(log™ n)
coloring [this paper] [Linial *87]

List edge coloring

Color palette: W™ =

List edge coloring

Color palette: W™ =

List edge coloring

(deg(e) + 1)-list edge coloring: lists of at least deg(e) + 1 colors

-

List edge coloring

* (2A - 1)-edge coloring:

» lists of 2/\ - 1 colors

» all lists the same »
!

Why list coloring

Let's try the following (non list coloring based) algorithm:

 Start from a graph of maximum degree A

» 2-color the edges such that the graph induced by each color has
maximum degree A/2

* Recurse on each subgraph

Why list coloring

Why list coloring

Why list coloring

Why list coloring

» Start from a graph of maximum degree A

» 2-color the edges such that the graph induced by each color has
maximum degree A/2 \

* Recurse on each subgraph Too hard

Why list coloring

» Start from a graph of maximum degree A

» c-color the edges such that the graph induced by each color has

maximum degree O(A/c) \

We need too many colors

* Recurse on each subgraph

Why list coloring

* Without lists, by using a recursive algorithm, we have to early commit on
color subspaces

* With lists, we can color a subgraph and then recurse on the remaining
uncolored subgraph

‘?\eC\“Se

N

&

(deg(e) + 1)-list edge coloring In time
(log A)Ollogleg 4) + O(log™ n)

High level ideas

Definitions

* Goal: (deg(e) + 1)-list edge coloring

» Relaxed version: ((x deg(e) + 1)-list
edge coloring

Definitions

» Goal: (deg(e) + 1)-list edge coloring

» Relaxed version: ((x deg(e) + 1)-list
edge coloring =X

Definitions

lack 1: >
» Goal: (deg(e) + 1)-list edge coloring T

» Relaxed version: ((x deg(e) + 1)-list
slack 2: >

edge coloring

Definitions

» Goal: (deg(e) + 1)-list edge coloring

» Relaxed version: ((x deg(e) + 1)-list
edge coloring

T(B, C) = time required to solve a list coloring
instance with a palette of size C and slack 3

slack 1:

slack 2:

.

.

High level idea

T(1,C) < B2-logA - T(B, C)
T(B,C) = logp - T(1,p)+ T(B/polylog p, C/p)

High level idea

T(1,C) < B2-logA - T(B, C)
T(B,C) =< logp-T(1,p)+ T(B/polylog p, C/p)

T(1,A) =< polylog A -T(1,vA)
T(1,A) = (log A)oleglog2) - T(7,0(1)) = (log A)O(loglog 4)

High level idea

T(B,C) < logp-T(1,p) + T(B/polylog p, C/p)

T(1,A) =< polylog A -T(1,vA)
T(1,A) = (log A)oleglog2) - T(7,0(1)) = (log A)O(loglog 4)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

* Reduce the degree by computing a defective edge
coloring

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

* Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

T,

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes) i

o

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes) i

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring i
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack 3

» Reduce the degree by computing a defective edge
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack f3 R(,ﬁ\mse\‘

» Reduce the degree by computing a defective edge <
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)

Increasing the slack

» Compute a deg(e)/(23)-defective edge coloring g(e) with O([3?) colors
* |terate through each color class i. Edges of color i do the following:
* Remove from the list the colors c(e') already used by the neighbors
* If the list has size larger than deg(e)/2 stay active

* Apply the algorithm for slack B on active edges, obtain c(e)

* Recurse on uncolored edges

Increasing the slack

T(1, C) < T(defective-coloring) + nr_color_classes - T(large slack) + T(recursion)

T(1,C) < B2-logA - T(B, C)

High level idea

T(1 C) [32 IogA T(B C)
T(B) log P T(1 p)+T(B/polylog p, C/p)

T(1,A) =< polylog A -T(1,vA)
T(1,A) = (log A)oleglog2) - T(7,0(1)) = (log A)O(loglog 4)

Relaxed list edge coloring

Relaxed list edge coloring

Relaxed list edge coloring

Relaxed list edge coloring

A
jf %%
I:F[g%%
% X
“’\f#\/ﬁ

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

o Split the color space into many independent subspaces

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

o Split the color space into many independent subspaces

* Assign a subspace to each edge

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

o Split the color space into many independent subspaces

» Assign a subspace to each edge

* |ndependently recurse on each graph induced by edges with the same
assigned subspace

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

o Split the color space into many independent subspaces m

» Assign a subspace to each edge

* |ndependently recurse on each graph induced by edges with the same
assigned subspace

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

o Split the color space into many independent subspaces

S

* |ndependently recurse on each graph induced by edges with the same
assigned subspace

» Assign a subspace to each edge

Relaxed list edge coloring

T(B,C) =< logp - T(1,p)+T(B/polylog p, C/p)

e Split the color space into many indepenua‘

S

* |ndependently recurse on each graph induced by edges with the same
assigned subspace

» Assign a subspace to each edge log p - T(1, p)

Relaxed list edge coloring

T(B,C) =< logp - T(1,p)+T(B/polylog p, C/p)

o Split the color space into many independent subspaces

S

* Independently recurse on each graph |nduced by edges with the same
assigned subspace

* Assign a subspace to each edge x Iog p T(1 p)

T(B/polylog p, C/p) ,

Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

. Spllt the Color space into many mdependent subspaces

- A33|gn a subspace to each edge

y Independently recurse on each graph mduced by edges with the same
assigned subspace

T(B/polylog p, C/p) '

Subspace assignment

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C, C, C, C,

i 2 3 4 65 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20

Subspace assignment

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C, C, C, C,

i 2 3 4 65 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20

. C,nL, "There are many
subspaces that are
1 2 5 6 7 12 17 |arge enough"

Subspace assignment

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C, C, C, C,

i 2 3 4 65 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20

7k s.t. there are at least

k lists C; satisfying
1 2 5 6 7 12 17 ICi N Le| 2 |Le| / (k Hp)

Subspace assignment

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
* kisthe same for all edges

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
* kisthe same for all edges
Goal.

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
» kisthe same for all edges

Goal.
* assign a list to each edge such that "few" neighboring edges have the

same list

Subspace assignment

Subspace assignment

How:

Subspace assignment

How:
* Transform this problem into a list coloring instance

Subspace assignment

How:
* Transform this problem into a list coloring instance

C,N L, C,N L ,NL CnlL, CynL,

. C,nL, C
[y 5 5] 6 o 14] 17 PYEA 26

\l'/

Subspace assignment

How:
* Transform this problem into a list coloring instance
* Modify the graph such that the edge degree is at most k-1

C,N L, c,nL, C,nL, C,nL, C.nL, CiNnL,

I1 2 5I 6 I12 14I 17 I21 24I 26

\l./

Subspace assignment

How:
* Transform this problem into a list coloring instance
* Modify the graph such that the edge degree is at most k-1

C,N L, c,nL, C,nL, C,nL, C.nL, CiNnL,

I1 2 5I 6 I12 14I 17 I21 24I 26

\l./

Subspace assignment

O\/ >%
/’i\:D H/N

VSRRV
>$ @/\>\<

A

A

Subspace assignment

1k s.1. there are at least k lists C; satisfying |Ci n Le| = |Le| / (k Hp)

Different edges may have different k. Solution:
» Split edges in buckets with "similar” values of k
* Solve each bucket sequentially as in the simple case

k=123 4/5 6 7 8|9 10 11 12 13 14 15 16

17 ..

Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| = |Le| / (k Hp)

Different edges may have different k. Solution:
» Split edges in buckets with "similar” values of k
* Solve each bucket sequentially as in the simple case

k=123 4|5 6 7 8|9 10 11 12 13 14 15 16

17 ..

Subspace assignment

\
/ \ {1,3,8,9,14}

{2,3,9,10,14}

Subspace assignment

\
/ \ {1,3,8,9,14}

{2,3,9,10,14}

Subspace assignment

Solution:
» Make some edges inactive, based on their current defect
* More recursion!

Relaxed list edge coloring

T(B,C) =< logp - T(1,p)+T(B/polylog p, C/p)

o Split the color space into many independent subspaces
» Assign a subspace to each edge - «‘ |09 P T(1 P)

* Independently recurse on each graph |nduced by edges with the same
assigned subspace

T(B/polylog p, C/p) ,

Putting things together

* Express (degree(e) + 1)-list edge coloring as a function of relaxed list edge coloring
» Create many instances with smaller degree
» Handle instances sequentially
» Recurse

* Express relaxed list edge coloring as a function of smaller list edge colouring
Instances

» Split the color space in many parts
» Assign subspaces by solving many new list coloring instances

» Recurse

Open questions: CONGEST model

* Can we adapt this algorithm to work in the CONGEST model?

» If we assign colors to some edges, we have to remove those colors from
the lists of their neighboring edges

» Nodes incident on the same edge need to agree on the new list

» Valid colors are the intersection of colors that are good for each side

Open questions: upper bounds

e We can solve (2A - 1)-edge coloring in quasi-polylog(A) + O(log* n)
» Can we solve it in polylog(A) + O(log* n) rounds?
» Can we solve vertex coloring in subpoly(A)?

» Can we solve O(A/c)-defective c-coloring fast?

Open questions: lower bounds

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

» Can we show that it cannot be solved in o(log A) + O(log* n)?

