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LOCAL model

» Undirected simple graph G = (V, E) of n nodes and
maximum degree A ‘/‘
e Each node has a unique ID @ W & 2 o

o
* Synchronous message passing model ’ L

* Unbounded computation

AN
e Unbounded bandwidth
O

* Focus on locality: time = number of rounds = distance
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Four classical problems

Maximal ¢ (A + 1)-vertex
independent set coloring

O\ VAN

Maximal (2A - 1)-edge
matching coloring




Four classical problems

These problems can be solved in poly(log n) rounds [Rozhon, Ghaffari "20]

Maximal ¢ (A + 1)-vertex
independent set coloring

O\ VAN

Maximal (2A - 1)-edge
matching coloring

But, how local are these problems?
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Four classical problems: locality

| Maximal O(A + log* n) Q(min{A,logn/loglogn}) (log™ n)
independent set [Barenboim, Elkin, Kuhn '09]  [Balliu et al. *19] [Linial "87]
I\/Iaximal O(A + log* n) Q(min{A,logn/loglogny}) (log” n)
matching [Panconesi, Rizzi *01] [Balliu et al. "19] [Linial "87]
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Four classical problems: locality

- (ZAC éll)r_iﬁgge 20(VIgR) | O(log* n) Q(log" n)

[Kuhn *20] [Linial ’87]



Edge coloring: state of the art

* (2A -1)-edge coloring (achieved through (A + 1)-vertex coloring):
* O(A +log* n) [Barenboim, Elkin '09], [Kuhn "09]
e O(A%4+ log* n) [Barenboim "15]

» O(VA + log* n) [Fraigniaud, Heinrich, Kosowski "16] [Barenboim, Elkin,
Goldenberg 18] [Maus, Tonoyan '20]

* O(A)-edge coloring: O(A¢ + log* n) [Barenboim, Elkin "10]

e (2/A-1)-edge coloring in 20leg 4) + O(log* n) [Kuhn "20]
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Our result

(deg(e) + 1)-list edge coloring can be solved in time quasi-polylogarithmic in A

(2A - 1)—.edge 90(log” log A) O(log™ n) (Y(log™ n)
coloring [this paper] [Linial *87]
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List edge coloring

(deg(e) + 1)-list edge coloring: lists of at least deg(e) + 1 colors

-




List edge coloring

* (2A - 1)-edge coloring:

» lists of 2/\ - 1 colors

» all lists the same »
!




Why list coloring

Let's try the following (non list coloring based) algorithm:

 Start from a graph of maximum degree A

» 2-color the edges such that the graph induced by each color has
maximum degree A/2

* Recurse on each subgraph
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Why list coloring

» Start from a graph of maximum degree A

» 2-color the edges such that the graph induced by each color has
maximum degree A/2 \

* Recurse on each subgraph Too hard



Why list coloring

» Start from a graph of maximum degree A

» c-color the edges such that the graph induced by each color has

maximum degree O(A/c) \

We need too many colors

* Recurse on each subgraph



Why list coloring

* Without lists, by using a recursive algorithm, we have to early commit on
color subspaces

* With lists, we can color a subgraph and then recurse on the remaining
uncolored subgraph
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(deg(e) + 1)-list edge coloring In time
(log A)Ollogleg 4) + O(log™ n)

High level ideas
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Definitions

» Goal: (deg(e) + 1)-list edge coloring

» Relaxed version: (( x deg(e) + 1)-list
edge coloring

T(B, C) = time required to solve a list coloring
instance with a palette of size C and slack 3

slack 1:

slack 2:

.

.




High level idea
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Increasing the slack

» Suppose we can solve “fast” a list edge coloring with
slack f3 R(,ﬁ\mse\‘

» Reduce the degree by computing a defective edge <
coloring

» Solve many instances of relaxed list edge coloring
sequentially (by going through color classes)



Increasing the slack

» Compute a deg(e)/(23)-defective edge coloring g(e) with O([3?) colors
* |terate through each color class i. Edges of color i do the following:
* Remove from the list the colors c(e') already used by the neighbors
* If the list has size larger than deg(e)/2 stay active

* Apply the algorithm for slack B on active edges, obtain c(e)

* Recurse on uncolored edges



Increasing the slack

T(1, C) < T(defective-coloring) + nr_color_classes - T(large slack) + T(recursion)

T(1,C) < B2-logA - T(B, C)



High level idea

T(1 C) [32 IogA T(B C)
T(B ) log P T(1 p)+T(B/polylog p, C/p)

T(1,A) =< polylog A -T(1,vA)
T(1,A) = (log A)oleglog2) - T(7,0(1)) = (log A)O(loglog 4)
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Relaxed list edge coloring

T(B,C) =< logp - T(1,p)+T(B/polylog p, C/p)

o Split the color space into many independent subspaces

S

* Independently recurse on each graph |nduced by edges with the same
assigned subspace

* Assign a subspace to each edge x Iog p T(1 p)

T(B/polylog p, C/p) ,



Relaxed list edge coloring

T(B,C) < logp - T(1,p)+ T(B/polylog p, C/p)

. Spllt the Color space into many mdependent subspaces

- A33|gn a subspace to each edge

y Independently recurse on each graph mduced by edges with the same
assigned subspace

T(B/polylog p, C/p) '
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Subspace assignment

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C, C, C, C,

i 2 3 4 65 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20

. C,nL, "There are many
subspaces that are
1 2 5 6 7 12 17 |arge enough"



Subspace assignment

C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
C, C, C, C,

i 2 3 4 65 o6 ¢ 8 9 10 11 12 13 14 15 16 17 18 19 20

7k s.t. there are at least

k lists C; satisfying
1 2 5 6 7 12 17 ICi N Le| 2 |Le| / (k Hp)



Subspace assignment



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
* kisthe same for all edges



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
* kisthe same for all edges
Goal.



Subspace assignment

1k s.1. there are at least k lists Ci satisfying |Ci n Le| 2 [Le| / (k Hp)

Simple case:
» kisthe same for all edges

Goal.
* assign a list to each edge such that "few" neighboring edges have the

same list
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Subspace assignment

How:
* Transform this problem into a list coloring instance
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Subspace assignment

How:
* Transform this problem into a list coloring instance
* Modify the graph such that the edge degree is at most k-1
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Subspace assignment
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Subspace assignment

1k s.1. there are at least k lists C; satisfying |Ci n Le| = |Le| / (k Hp)

Different edges may have different k. Solution:
» Split edges in buckets with "similar” values of k
* Solve each bucket sequentially as in the simple case

k=123 4/5 6 7 8|9 10 11 12 13 14 15 16

17 ..
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Subspace assignment

\
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Subspace assignment

\
/ \ {1,3,8,9,14}

{2,3,9,10,14}




Subspace assignment

Solution:
» Make some edges inactive, based on their current defect
* More recursion!



Relaxed list edge coloring

T(B,C) =< logp - T(1,p)+T(B/polylog p, C/p)

o Split the color space into many independent subspaces
» Assign a subspace to each edge - «‘ |09 P T(1 P)

* Independently recurse on each graph |nduced by edges with the same
assigned subspace

T(B/polylog p, C/p) ,



Putting things together

* Express (degree(e) + 1)-list edge coloring as a function of relaxed list edge coloring
» Create many instances with smaller degree
» Handle instances sequentially
» Recurse

* Express relaxed list edge coloring as a function of smaller list edge colouring
Instances

» Split the color space in many parts
» Assign subspaces by solving many new list coloring instances

» Recurse



Open questions: CONGEST model

* Can we adapt this algorithm to work in the CONGEST model?

» If we assign colors to some edges, we have to remove those colors from
the lists of their neighboring edges

» Nodes incident on the same edge need to agree on the new list

» Valid colors are the intersection of colors that are good for each side



Open questions: upper bounds

e We can solve (2A - 1)-edge coloring in quasi-polylog(A) + O(log* n)
» Can we solve it in polylog(A) + O(log* n) rounds?
» Can we solve vertex coloring in subpoly(A)?

» Can we solve O(A/c)-defective c-coloring fast?



Open questions: lower bounds

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

» Can we show that it cannot be solved in o(log A) + O(log* n)?



