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» Can these problems be solved efficiently in a distributed setting?
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Simple scenario

* Nodes are 2 colored

* The communication graph is A-regular
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Main results

Maximal matching and maximal independent set
cannot be solved in

« o(A +log log n / log log log n) rounds
with randomized algorithms

« o(A +logn /loglogn) rounds
with deterministic algorithms

Upper bound:

O(A +log* n)
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* We construct:
» algorithm A, solves problem P, in T = 1 rounds
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. o . [B. 2019]: Given any Pj, it is
 But P is nontrivial, so Ay cannot exist nossible to find Pis1 automatically,

but the description of the problem
may grow exponentially



Proof sketch

Maximal matching in o(A) rounds

— “A2 matching” in o(A7/2) rounds
— P(A7/2,0) in o(A7/2) rounds
— P(0(A"2), 0(A)) in 0 rounds
N

Apply round

contradiction = .
elimination

technique




Main Lemma

* Given: A solves P(x, y) in T rounds

« We can construct: A’solves P(x + 1,y + x)in T = 1 rounds

Walx,y) = (I\/I()d_1 Pd) Oy X",

Ba(z,y) = (MX][POX]"~* | [0X]*)[POX]*[MPOX]*.




Lower bound for the LOCAL model

* The lower bound holds for the simple scenario where randomness is not
allowed and nodes are anonymous

» Additional steps are required to handle:
* randomness

* NnONn anonymous nodes



Conclusions and open problems

* Linear-in-A lower bounds for maximal matchings and maximal
independent sets

» Maximal matchings can not be solved fast:
* The simple proposal algorithm is optimal

« Randomization and large messages do not help

« How about a lower bound for distributed A+17 coloring?



