
Three Notes
on
Distributed Property Testing
Guy Even1,∗, Orr Fischer2, Pierre Fraigniaud3, Tzlil Gonen𝟐, Reut Levi4,∗,
Moti Medina𝟓,∗, Pedro Montealegre6, Dennis Olivetti𝟕,

Rotem Oshman2, Ivan Rapaport8, & Ioan Todinca9

http://www.superiorwallpapers.com

1. Tel-Aviv University, EE, Israel
2. Tel Aviv University, CS, Israel
3. CNRS and University Paris Diderot, France
4. Weizmann Institute of Science, CS and Applied Math, Israel
5. Ben-Gurion University of the Negev, ECE, Israel

6. Facultad de Ingeniería y Ciencias, Universidad Adolfo
Ibáñez, Chile

7. Gran Sasso Science Institute, L’Aquila, Italy
8. DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Chile
9. Université d’Orléans, INSA Centre Val de Loire, LIFO EA

4022, France
*. Work done in Max Planck Institute for Informatics, Saarland
Informatics Campus, Germany

The Distributed CONGEST Model [Peleg 2000]

• A synched network 𝑮 = (𝑽, 𝑬)

• 𝑽 are the processors
• Each processor has a distinct ID.

• 𝑬 are the communication links.

• Each processor is given a local input.

• In each round, each processor performs the
following steps:

1. Receive messages from neighbors.

2. Execute a local (randomized) computation.

3. Sends messages of 𝑶(𝐥𝐨𝐠𝒏) bits to every neighbor.

• Last round: all processors stop and output a local
output.

• Complexity measure: #𝒓𝒐𝒖𝒏𝒅𝒔.

Distributed Property Testing in the
CONGEST Model (General Model ver.)
[Censor-Hillel, Fischer, Schwartzman, Vasudev. 2016]

• A graph 𝐺 = (𝑉, 𝐸).

• Edge-distance: 𝑑𝑖𝑠𝑡(𝐺, 𝐺′) ≜ |𝐸Δ𝐸′|
• The edge-distance between two graphs = #edges in the symmetric diff.

• A graph property 𝑃.
• Set of all graphs that have the property 𝑃.

• Distance from 𝑃: 𝑑𝑖𝑠𝑡 𝐺, 𝑃 ≜ min
𝐺′∈𝑃

𝑑𝑖𝑠𝑡(𝐺, 𝐺′).

• 𝐺 is 𝜖-far from 𝑃 : 𝑑𝑖𝑠𝑡 𝐺, 𝑃 ≥ 𝜖 · |𝐸|.

• 𝜖-tester for 𝑃 :
𝐺 ∈ 𝑃,

𝐺 is 𝜖−far from 𝑃,
∀𝑣 ∈ 𝑉 𝑜𝑢𝑡𝑝𝑢𝑡 𝑨𝑪𝑪𝑬𝑷𝑻

∃𝑣 ∈ 𝑉 𝑜𝑢𝑡𝑝𝑢𝑡 𝑹𝑬𝑱𝑬𝑪𝑻 𝑤. 𝑝. 2/3

𝑷

𝑮

Studied Problems

• The Subgraph-Freeness Problem.
• Given a graph 𝐻, s.t. 𝐻 = 𝑂(1).

• 𝑃 = {𝐴𝑙𝑙 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ𝑠 𝑡ℎ𝑎𝑡 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝐻 𝑎𝑠 𝑎 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ}.

• Examples: 𝑇-freeness, 𝐾𝑠-freeness, 𝐶𝑠-freeness.

• Cycle-freeness
• 𝑃 = {𝐴𝑙𝑙 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑎𝑐𝑦𝑐𝑙𝑖𝑐}.

• Bipartiteness
• 𝑃 = {𝐴𝑙𝑙 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝐵𝑖𝑝𝑎𝑟𝑡𝑖𝑡𝑒}.

Overview of Previous Results

• Initiated by Brakerski, Patt-Shamir 2011.
• Testing algorithm for finding large near-cliques in the graph.

• Censor-Hillel, Fischer, Schwartzman, and Vasudev, DISC 2016.
• Property testing in CONGEST

• Triangle-freeness, cycle-freeness, bipartiteness.

• Lower bounds Ω(log |𝑉|) for Bipartiteness, and Cycle-freeness.

• Fraigniaud, Rapaport, Salo, and Todinca, DISC 2016.
• Tester for 𝐻-freeness, 𝑉 𝐻 ≤ 4

• For 𝑉 𝐻 > 4 presented a “hard” family for algs with “natural” properties.

• Pierre Fraigniaud and Dennis Olivetti, SPAA 2017.
• Tester for 𝐶𝑠-freeness, 𝑠 ≥ 4.

Overview of Main Results
• 𝐻-freeness:

• 𝑂(1/𝜖) #rounds,

• For a large family of graphs 𝐻, where 𝐻 = 𝑂(1).

• 𝑇-freeness:
• A deterministic CONGEST alg.

• Decision alg.

• Constant #rounds.

• 𝐾𝑠-freeness:
• 𝑠 ≥ 3,

• 𝑂 𝐸
1

2
−

1

𝑠−2 ⋅ 𝜖−
1

2
−

1

s−2 #rounds.

• Reducing the dependency on the diameter
• Bipartiteness: 𝑂((log |𝑉|)/𝜖) #rounds.

• Testing and correcting Cycle-freeness: 𝑂((log |𝑉|)/𝜖) #rounds.

First Note

• Introducing Distributed Correction
• Reducing the Dependency on the Diameter and

Applications
• Testing Bipartiteness,
• Testing Cycle-freenes,
• Corrector for Cycle-freeness.

• Testers for 𝐻-freeness for 𝑉 𝐻 ≤ 4.
• 𝑂(𝜖−1) rounds.

• 𝑇-freeness
• Centralized testing for any tree 𝑇.
• Distributed simulation: 𝜖-tester with𝑂(𝑘𝑘2+1 · 𝜖−𝑘) rounds.

Guy Even Reut Levi Moti Medina

Distributed Correctors: Motivation

• 𝜖-tester
• 𝐺 is 𝜖-far from 𝑃 → ∃𝑣 ∈ 𝑉 that outputs REJECT w.p ≥ 2/3.
• That is, 𝑑𝑖𝑠𝑡 𝐺, 𝑃 ≥ 𝜖 ⋅ 𝐸 .

•⇒ 1 vertex shouts “NO” even though there are ≥ 𝜖 ⋅ 𝐸
“violations” .
• Lots of edges to add or remove!

• We prefer:
• Having that 𝜖 fraction of |𝑉| output REJECT.
• Having that 𝑑𝑖𝑠𝑡 𝐺, 𝑃 vertices output REJECT.

• Or even better, that 𝐺 locally “correct” itself!

Distributed Corrector

A graph property 𝑷 is edge-monotone (EM) if 𝑮 ∈ 𝑷 and 𝑮′ is obtained from 𝑮 by the
removal of edges, then 𝑮′ ∈ 𝑷.

𝒅𝒊𝒔𝒕(𝑮, 𝑷) min #edges that should be removed from 𝑮

in order to obtain the property 𝑷.

An algorithm is 𝝐-corrector for property 𝑷 if:

• 𝐸′ ⊆ 𝐸,

• 𝐺 𝑉, 𝐸 ∖ 𝐸′ ∈ 𝑃,

• 𝐸′ ≤ 𝑑𝑖𝑠𝑡 𝐺, 𝑃 + 𝜖 ⋅ 𝐸 ,

• Upon termination ∀𝑣 ∈ 𝑉 ∶ 𝑘𝑛𝑜𝑤𝑠 𝐸′(𝑣).

Example: Cycle-freeness corrector: 𝐸 ∖ 𝐸′ is acyclic.

𝑮 = (𝑽, 𝑬)

𝑬′ ⊆ 𝑬

𝑷

𝑮

Prelim. I: (𝜷, 𝒅)-decomposition
[Miller, Peng, Chen Xu 2013]

Partition of 𝑉 into disjoint subsets
𝑽𝟏, … , 𝑽𝒌:

•∀1 ≤ 𝑖 ≤ 𝑘: 𝑮 𝑽𝒊 is connected.
• 𝐺 𝑉𝑖 : vertex induced subgraph of 𝐺,

induced by 𝑉𝑖.

•∀1 ≤ 𝑖 ≤ 𝑘: 𝒅𝒊𝒂𝒎 𝑮 𝑽𝒊 ≤ 𝒅,

•#𝒄𝒖𝒕 𝒆𝒅𝒈𝒆𝒔 ≤ 𝜷 ⋅ 𝑬 .

𝑮 = (𝑽, 𝑬)

𝑽1 𝑽2

𝑽3

Prelim. II: Alg (𝝐, (𝐥𝐨𝐠𝒏)/𝝐)-decomposition in CONGEST
[Elkin & Neiman 2017]

Thm. An (𝝐, 𝑶(𝐥𝐨𝐠𝒏 /𝝐))-decomposition can be computed

• Randomized CONGEST-model,

• 𝑶((𝐥𝐨𝐠𝒏)/𝝐) rounds,

• w.p. ≥ 𝟏 − 𝟏/𝐏𝐨𝐥𝐲(𝒏).

At the end of the algorithm:

• There is a spanning rooted tree 𝑻𝒊 for each subset 𝑽𝒊.

• Each 𝒗 ∈ 𝑽𝒊 knows: the root of 𝑻𝒊, its parent in 𝑻𝒊.

• Each 𝒗 ∈ 𝑽𝒊 knows which of the edges incident to it are cut-edges.
Algorithms for (𝝐, (𝐥𝐨𝐠 𝒏)/𝝐)-decompositions were developed in the context of parallel algorithms:
• Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter graph decomposition is in NC. In Scandinavian Workshop on Algorithm Theory, pages 83–93.Springer, 1992.
• Guy E Blelloch, Anupam Gupta, Ioannis Koutis, Gary L Miller, Richard Peng, and Kanat Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and low-stretch

subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.
• Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and

architectures, pages 196–203. ACM, 2013.

𝑽𝑖

Our Result:
Reducing #rounds 𝑂 𝐷𝑖𝑎𝑚 → 𝑂(𝜖−1log 𝑛)
• A graph property 𝑷 is non-disjointed (ND) if for

every witness 𝑮′ against 𝑮 ∈ 𝑷, there exists an
induced subgraph 𝑮′′ of 𝑮′ that is connected
such that 𝑮′′ is also a witness against 𝑮 ∈ 𝑷.

• Verifier for 𝑷: a distributed algorithm in which
all vertices accept iff 𝑮 ∈ 𝑷.

Thm. Let 𝑷 be an edge-monotone non-disjointed
graph property, let 𝑮 be the input graph.

• Verifier in 𝑶(𝑫𝒊𝒂𝒎(𝑮)) rounds

• ⇒ ∃ 𝝐-tester in 𝑶((𝐥𝐨𝐠𝒏)/𝝐) rounds w.p. ≥ 𝟏
− 𝟏/𝐏𝐨𝐥𝐲(𝒏).

A graph property 𝑷 is edge-monotone (EM) if 𝑮 ∈ 𝑷 and 𝑮′
is obtained from 𝑮 by the removal of edges, then 𝑮′ ∈ 𝑷.

Verifier for 𝑷
#𝒓𝒐𝒖𝒏𝒅𝒔 = 𝑶(𝒅𝒊𝒂𝒎(𝑮))

𝝐 − 𝒕𝒆𝒔𝒕𝒆𝒓 for 𝑷
#𝒓𝒐𝒖𝒏𝒅𝒔 = 𝑶((𝐥𝐨𝐠𝒏)/𝝐)

𝑷𝟏 = {𝒈𝒓𝒂𝒑𝒉𝒔 𝒘𝒊𝒕𝒉
𝒂𝒕 𝒎𝒐𝒔𝒕 𝒐𝒏𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆}

𝑷𝟏 = {𝒂𝒄𝒚𝒄𝒍𝒊𝒄 𝒈𝒓𝒂𝒑𝒉𝒔}

Corollary. 𝝐-tester in the randomized CONGEST-model for:

• Bipartiteness. #rounds = 𝑶((𝐥𝐨𝐠𝒏)/𝝐),

• Lower bound 𝛀(𝐥𝐨𝐠𝒏) [Censor-Hillel, Fischer, Schwartzman, Vasudev.
2016].

• Improves over 𝐏𝐨𝐥𝐲(𝝐−𝟏𝐥𝐨𝐠𝒏) in the bounded degree model of
[CHFSV 2016]

• Cycle-Freeness. #rounds = 𝑶((𝐥𝐨𝐠𝒏)/𝝐).

Theorem. ∃ 𝝐-corrector for Cycle-Freeness in the
randomized CONGEST-model.

• #rounds = 𝑶((𝐥𝐨𝐠𝒏)/𝝐).

A Corrector.

Applications

𝑪𝒚𝒄𝒍𝒆
𝒇𝒓𝒆𝒆𝑮

𝑮′

∖ 𝑩 ≜ 𝝐 ⋅ |𝑬|

∖ 𝑩

An algorithm is 𝝐-corrector for property 𝑷 if:
• 𝐸′ ⊆ 𝐸,
• 𝐺 𝑉, 𝐸 ∖ 𝐸′ ∈ 𝑃,
• 𝐸′ ≤ 𝑑𝑖𝑠𝑡 𝐺, 𝑃 + 𝜖 ⋅ 𝐸 ,
• Upon termination ∀𝑣 ∈ 𝑉 ∶ 𝑘𝑛𝑜𝑤𝑠 𝐸′(𝑣).

𝑮 = (𝑽, 𝑬)

Proof sketch. Need to show:
𝜖 ⋅ 𝐸 + 𝑑𝑖𝑠𝑡 𝑮′, 𝑃 ≤ 𝜖 ⋅ 𝐸 + 𝑑𝑖𝑠𝑡 𝑮, 𝑃

𝑽1 𝑽2

𝑽3

1st Intermezzo

Questions?

• My email: moti.medina@gmail.com

• Link to this note: https://arxiv.org/abs/1705.04898
• “Faster and Simpler Distributed Algorithms for Testing and Correcting Graph

Properties in the CONGEST-Model” by Guy Even, Reut Levi, and Moti Medina.

Thank you!

mailto:moti.medina@gmail.com
https://arxiv.org/abs/1705.04898

Second Note

In the CONGEST model, it is possible to check the presence of a fixed
tree T of constant size, in O(1) rounds, deterministically.

There exists an 𝝐-tester for H freeness, for any graph H of constant size
composed by a tree, an edge, and arbitrary connections between the
endpoints of the edge and the nodes of the tree, that requires O(1/𝝐)
rounds in the CONGEST model.

Tree Detection

Tree Detection

Tree Detection

Tree Detection

Congestion

Congestion

Sparsification of the intermediate solutions

Given a set of sets S, we need to find a representative set R, such that:
• It is small
• R ⊆ S
• For any other possible set t (of some constant fixed length), if there

is a set s∊S disjoint with t, then there is also a set r∊R disjoint with t.
Lemma [Erdős, Hajnal, Moon '64]:
R is of constant size.

Representative Sets

R = {(1, 2), (4, 5), (6, 7)} is a representative set of
S = {(1, 2), (1, 3), (4, 5), (6, 7), (8, 9), (8, 10), (8, 11), (9, 12)}

Given: Disjoint with it:

(1,2) (4,5)

(4,5) (6,7)

(1,4) (6,7)

(10,20) (1,2)

Property testing
1.Choose one edge uniformly at random
2.Execute (a slightly modified version of) the tree detection algorithm

Open Problems

2nd Intermezzo

Questions?

Thank you!

Third Note

1. Simpler algorithm for 𝐶𝑘-freeness in 𝑂
1

𝜖
rounds

2. Algorithm for finding any tree 𝑇 in 𝑂 1 rounds (exact)

3. Combination: general class, including all 5-vertex graphs except 𝐾5,

in 𝑂
1

𝜖
rounds

4. Algorithm for 𝑘-clique freeness in 𝑂 𝑚
1

2
−

1

𝑘−2 ⋅ 𝜖−
1

2
−

1

𝑘−2 rounds

• For triangles: if 𝜖 ≥ min 𝑚−
1

3,
𝑛

𝑚
, in 𝑂 1 rounds!

Main Ingredient #1: Disjoint Copies

Well-known observation:

• If 𝐺 is 𝜖-far from 𝐻-free, then

• 𝐺 contains
𝜖⋅𝑚

𝐸 𝐻
edge-disjoint copies of 𝐻

⇒ random edge participates in 𝐻 w.p. ≥ 𝜖

YES

NO

Main Ingredient #2: Color Coding

• [Alon, Yuster, Zwick ‘95]

• Idea: to find 𝐶𝑘,
Hello

Hello

Hello

Hello

Hello

Hello

Found it!

Main Ingredient #2: Color Coding

• [Alon, Yuster, Zwick ‘95]

• The problem…
Hello

Hello

Hello

Hello

Hello

Hello

Found it!

Main Ingredient #2: Color Coding

• [Alon, Yuster, Zwick ‘95]

• Solution:





Algorithm 1: 𝐶𝑘-freeness

𝐺

0 1

3 2

𝐻

Algorithm 1: 𝐶𝑘-freeness

• Step 1: color coding

𝐺

0 1

3 2

𝐻

Algorithm 1: 𝐶𝑘-freeness

• Step 1: color coding

• Step 2: select random directed edge colored (0,1)

𝐺

0 1

3 2

𝐻

Algorithm 1: 𝐶𝑘-freeness

• Step 1: color coding

• Step 2: select random directed edge colored (0,1)

• Step 3: color-coded BFS

𝐺
0

1

2

3

0 1

3 2

𝐻

Algorithm 1: 𝐶𝑘-freeness

• Step 1: color coding

• Step 2: select random directed edge colored (0,1)

• Step 3: color-coded BFS
• Assign random weight to each edge
• Defer to lowest-weight edge

Algorithm 2: 𝑇-freeness

• Step 1: color coding
𝑇

Algorithm 2: 𝑇-freeness

• Step 1: color coding

• Step 2: convergecast
• Initially:

• State = “closed” if color = leaf of 𝑇

• State = “open” otherwise

• In each round: send (state, color)
• If received (“closed”, 𝑣) for each child 𝑣 in 𝑇: set state to “closed”

𝑇

Algorithm 2: 𝑇-freeness

• Step 1: color coding

• Step 2: convergecast
• Initially:

• State = “closed” if color = leaf of 𝑇

• State = “open” otherwise

• In each round: send (state, color)
• If received (“closed”, 𝑣) for each child 𝑣 in 𝑇: set state to “closed”

𝑇

Algorithm 2: 𝑇-freeness

• Step 1: color coding

• Step 2: convergecast
• Initially:

• State = “closed” if color = leaf of 𝑇

• State = “open” otherwise

• In each round: send (state, color)
• If received (“closed”, 𝑣) for each child 𝑣 in 𝑇: set state to “closed”

𝑇

Algorithm 2: 𝑇-freeness

• Step 1: color coding

• Step 2: convergecast
• Initially:

• State = “closed” if color = leaf of 𝑇

• State = “open” otherwise

• In each round: send (state, color)
• If received (“closed”, 𝑣) for each child 𝑣 in 𝑇: set state to “closed”

𝑇

Combination

Characterization 1:

• ∃edge 𝑢, 𝑣 s.t. any cycle in 𝐻 contains 𝑢 or 𝑣 (or both)

Combination

Characterization 2:

1. Start with edge 0,1

2. Add “disjoint” cycles including 0, 1 or both

3. Add “disjoint” trees rooted at prior nodes

4. Connect 0, 1 freely

Examples

Finale

Questions?

Thank you from all of us!

