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CONGEST model
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Synchronous
I All nodes start the computation at the same round
I The computation proceeds in phases
I At each phase each node can send a different message to

each neighbor

Fault-free

Non-rational agents

Limited bandwidth
Complexity:

I Number of rounds
I Number of messages
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Example: Finding a leader
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Example: Finding a leader

Time complexity: Θ(diameter)

Message complexity: Θ(edges · diameter)
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Complexities

Complexity Problem
Θ(1) Checking a coloring

Θ(log∗ n)1,2 Coloring a ring
O(logn)3 Approximating a maximal matching

Θ̃(
√
n+ diameter)4,5 MST, SSSP approximation
Θ(n/ logn)6 Diameter, APSP
Õ(n5/4)7 Weighted APSP

Ω(n2/ log2 n)8 Maximum independent set
Θ(n2)8 Checking a non trivial automorphism

1[Linial ’92] 2[Cole, Vishkin ’86] 3[Israeli, Itai ’86] 4[Kutten, Peleg ’98]
5[Becker, Karrenbauer, Krinninger, Lenzen ’16]

6[Hua, Fan, Qian, Ai, Li, Shi, Jin ’16] 7[Huang, Nanongkai, Saranurak ’17]
8[Censor-Hillel, Khoury, Paz ’17]
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Example: Congestion
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Subgraph detection

Given a graph pattern H:

if G does not contain H as subgraph, all nodes accept;

otherwise, at least one node rejects.
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Subgraph detection

Results:

Triangle detection requires O(n2/3) rounds [Izumi, Le Gall,
PODC’17].

Kk detection (k ≥ 4) requires Ω̃(n) rounds. [Drucker, Kuhn,
Oshman, PODC’14]

Ck detection (k ≥ 4) requires Ω̃(ex(n,Ck)/n) rounds, where
ex(n,H) is the maximal possible number of edges of an
n-node graph G such that G does not contain H as subgraph.
[Drucker, Kuhn, Oshman, PODC’14]

For every k-node graph H, H-detection requires Õ(n1−2/k)
rounds, if the communication graph is a clique. [Dolev,
Lenzen, Peled, DISC’12]
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Which patterns are detectable efficiently?

Theorem [Fraigniaud, Montealegre, O., Rapaport, Todinca, DISC’17]

For every tree T of constant size, there exists a deterministic
algorithm performing in O(1) rounds in the CONGEST model for
detecting whether the given input network contains T as a
subgraph.

Dennis Olivetti 10 / 43
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Representative Sets

Lemma [Erdős, Hajnal, Moon ’64]

Let V be a set of size n, and consider two integer parameters p
and q. For any set F ⊆ P(V) of subsets of size at most p of V,
there exists a compact (p,q)-representation of F, i.e., a subset F̂
of F satisfying:

1 For each set C ⊆ V of size at most q, if there is a set L ∈ F
such that L∩ C = ∅, then there also exists L̂ ∈ F̂ such that
L̂∩ C = ∅;

2 The cardinality of F̂ is at most (p+qp ), for any n ≥ p+ q .

Dennis Olivetti 13 / 43



Breaking the lower bounds

Pattern detection:

We want to detect more patterns, efficiently.

There are polynomial lower bounds.

We need to relax the problem.

Possible ways:

Allow more bandwidth.

Assume that the communication graph is a clique.

Allow some error.

Dennis Olivetti 14 / 43



Distributed property testing
Let G = (V,E), n = |V|, m = |E|. Let ε be a small constant in (0,1).
A distributed tester for a graph property P is a distributed
randomized algorithm A that satisfies the following conditions:

G satisfies P⇒ every node outputs “accept”

G is ε-far from satisfying P⇒
Pr[at least one node outputs “reject”] ≥ 2

3

All instances

G does not satisfy P

G is ε-far
from satisfying P

Dennis Olivetti 15 / 43



Distributed property testing
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How to measure how far is a graph from satisfying
a property?

There exist two distinct models:

Dense model

A graph is ε-far from satisfying a property if at least εn2 edges
should be added or removed from G in order to make the
property hold.

Sparse model

A graph is ε-far from satisfying a property if at least εm edges
should be added or removed from G in order to make the
property hold.
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State of the art
[Censor-Hillel, Fischer, Schwartzman, Vasudev ’16]

Any ε-tester for the dense model (for a non-disjointed property)
that makes q queries can be converted to a distributed ε-tester
that requires O(q2) rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev ’16]

Triangle freeness can be tested in O(1/ε2)

Cycle freeness can be tested O(logn/ε)

Cycle freeness requires at least Ω(logn)

Bipartiteness can be tested in in O(poly(log n
ε /ε)) in bounded

degree graphs

[Fraigniaud, Rapaport, Salo, Todinca ’16]

H-freeness can be tested in constant time for any H s.t.
|V(H)| ≤ 4
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Which patterns are detectable efficiently?

Theorem [Fraigniaud, O., SPAA’17]

There exists an ε-tester for Ck freeness, for any constant k ≥ 3,
that requires O(1

ε ) rounds in the CONGEST model.

Theorem [Fraigniaud, Montealegre, O., Rapaport, Todinca, DISC’17]∗

There exists an ε-tester for H freeness, for any graph H of
constant size composed by a tree, an edge, and arbitrary
connections between the endpoints of the edge and the nodes of
the tree, that requires O(1

ε ) rounds in the CONGEST model.

∗[Three Notes on Distributed Property Testing, Even, Fischer, Fraigniaud,
Gonen, Levi, Medina, Montealegre, O., Oshman, Rapaport, Todinca]
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Open Problem
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Congested clique

If we assume that the communication graph is a clique we can
solve many problems very efficiently:

C4 detection in O(1)1 rounds.

MST in O(1)2 rounds.

Matrix multiplication, APSP approximation, triangle and
4-cycle counting, girth computing in O(n0.158)2 rounds.

This model is very powerful:

No lower bounds are known.

It can simulate some powerful classes of circuits.3

The number of edges is quadratic in the number of nodes, it may
be hard to build it in practice.

1[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela ’15]
2[Jurdzinski, Nowicki ’17] 3[Drucker, Kuhn, Oshman ’17]
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Core-periphery networks

A novel network architecture for parallel and distributed
computing, inspired by social networks and complex
systems, proposed by [Avin, Borokhovich, Lotker, Peleg ’14].

A core-periphery network G = (V,E) has its node set
partitioned into a core C and a periphery P, and satisfies the
following axioms:

I Core boundary

I Clique emulation

I Periphery-core
convergecast

Dennis Olivetti 23 / 43



Axiom 1: Core boundary

For every node v ∈ C, degC(v) ' degP(v), where, for S ⊆ V and
v ∈ V, degS(v) denotes the number of neighbors of v in S.

Dennis Olivetti 24 / 43



Axiom 2: Clique emulation

The core can emulate the clique in a constant number of rounds
in the CONGEST model. That is, there is a communication
protocol running in a constant number of rounds in the CONGEST
model such that, assuming that each node v ∈ C has a message
Mv,w on O(logn) bits for every w ∈ C, then, after O(1) rounds,
every w ∈ C has received all messages Mv,w, for all v ∈ C.

Dennis Olivetti 25 / 43



Axiom 3: Periphery-core convergecast

There is a communication protocol running in a constant number
of rounds in the CONGEST model such that, assuming that each
node v ∈ P has a message Mv on O(logn) bits, then, after O(1)
rounds, for every v ∈ P, at least one node in the core has received
Mv.

x 2

Dennis Olivetti 26 / 43



Not Core-Periphery Networks

2 and 3 1 and 3

1 and 2
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Core-Periphery in Practice

Many file sharing networks:
Centralized:

I eDonkey
I OpenNap

Distributed:
I Kademlia
I WinMX
I Gnutella

(Bearshare, Limewire, . . . )
I Bittorrent

56k bandwidth

DSL bandwidth
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Which graphs can satisfy Axiom 2 efficiently?

Nodes should be able to perform an all-to-all communication
efficiently

We want the graph as sparse as possible

Dennis Olivetti 29 / 43



Tradeoff between edges and rounds
Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO’16]

Let n ≥ 1, and k ≥ 3. There is an n-node graph with k−2
(k−1)2 n2

edges that can emulate the n-node clique in k rounds. Also, there
is an n-node graph with 1

3n
2 edges that can emulate the n-node

clique in 2 rounds.

Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO’16]

Let n ≥ 1, k ∈ {1, . . . ,n− 1}, and let G be an n-node graph that
can emulate the n-node clique in k rounds. Then G has at least
n(n−1)
k+1 edges.
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Proof idea

b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0
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Random graphs

Theorem [Balliu,Fraigniaud, Lotker, O., SIROCCO’16]

Let c ≥ 0, n ≥ 1, α =
√
(3 + c)e/(e− 2) where e is the base of the

natural logarithm, and p ≥ α
√

lnn/n. For G ∈ Gn,p,
Pr[G can emulate Kn in O(min{ 1

p2 ,np}) rounds] ≥ 1−O( 1
n1+c )

Dennis Olivetti 32 / 43



The power of Core-Periphery networks

Matrix transposition in O(k) rounds, where k is the number of
nonzero entries.

Vector by matrix multiplication in O(k) rounds.

Matrix multiplication in O(k2) rounds.

Rank finding in O(1) rounds.

Median finding in O(1) rounds.

Mode finding in O(1) rounds.

Number of distinct values O(1) rounds.

MST in O(log2 n) rounds.

Dennis Olivetti 33 / 43



Minimum Spanning Tree
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MST in the Congest model:

D = 1:
O(1)1 randomized,
O(log logn)2 deterministic

D = 2:
O(logn)3 deterministic

D ≥ 3: Ω( 3
√
n)3

Core-Periphery (D ≈ 4):
O(log2 n)4 randomized

1[Jurdzinski, Nowicki ’17] 2[Lotker, Patt-Shamir, Pavlov, Peleg ’05]
3[Lotker, Patt-Shamir, Peleg ’06] 4[Avin, Borokhovich, Lotker, Peleg ’14]
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Minimum Spanning Tree

Theorem [Balliu,Fraigniaud, Lotker, O., SIROCCO’16]

There exists a deterministic algorithm that solves the MST
construction task in O(logn) rounds in Core-Periphery networks.

Dennis Olivetti 35 / 43



Open problem

In the Congested Clique we can construct a MST in O(1) rounds,
can we construct a MST in Core-Periphery networks in o(logn)?

Dennis Olivetti 36 / 43



The CONGESTB model

Typically, messages are chosen to be B = O(logn) bits:

MST can be constructed in O(
√
n log∗ n+D)1 rounds

SSSP can be approximated in Õ(ε−O(1)(
√
n+D))2

APSP can be computed in O(n/ logn)3

Typically, lower bounds depend on B:

MST and SSSP require Ω(
√
n/B)4

APSP requires Ω(n/B)5,6

1[Kutten, Peleg ’98]
2[Becker, Karrenbauer, Krinninger, Lenzen ’16]
3[Hua, Fan, Qian, Ai, Li, Shi, Jin ’16]
4[Das Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg,
Wattenhofer ’10]
5[Abboud, Censor-Hillel, Khoury ’16]
6[Frischknecht, Holzer, Wattenhofer ’12]

Dennis Olivetti 37 / 43



The CONGESTB model

How the complexity of existing algorithms scale when more
bandwidth is allowed?

Dennis Olivetti 38 / 43



Results

There exists an algorithm that solves the APSP problem in
Õ(n/B+D) rounds.

There exists an algorithm that constructs a MST in Õ(D+
√

n
B )

rounds

There esists an algorithm that finds a (1 + ε)-approximation of

the SSSP problem in Õ(ε−O(1)(
√

n
B +D)) rounds.

Dennis Olivetti 39 / 43



Results

There is a problem such that:

It can be solved in O(logn) rounds with B = O(logn).

In order to solve it in less than logn
2 rounds, messages must

be of size at least B = Ω̃(n).

1

√
logn

logn

logn n
log3 n

R
o
u
n
d
s

Message Size

min(logn, n
B log2 n

)
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Remarks

In practice, one may prefer to use more bandwidth in order to
decrease the latency.

Different problems scale differently with the bandwidth.

In some cases more bandwidth does not help.

It makes sense to analyze algorithms for the whole spectrum
of bandwidths.
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Open problems

Analyze more algorithms

Find common patterns
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Thank you
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