
DOCTORAL DISSERTATION

Fast Computing in Networks
with Limited Bandwidth

PHD PROGRAM IN COMPUTER SCIENCE

Ph.D. candidate:

Dennis OLIVETTI

dennis.olivetti@gssi.it

Supervisor:

Prof. PIERRE FRAIGNIAUD

pierre.fraigniaud@irif.fr

December 2017

GSSI Gran Sasso Science Institute

Viale Francesco Crispi, 7 - 67100 L’Aquila - Italy

mailto:dennis.olivetti@gssi.it
mailto:pierre.fraigniaud@irif.fr
http://www.gssi.infn.it
https://goo.gl/maps/9Cj77

Supervising professor

Professor Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale (IRIF),

CNRS and University Paris Diderot, France

Thesis advisor

Professor Pierre Fraigniaud

Institut de Recherche en Informatique Fondamentale (IRIF),

CNRS and University Paris Diderot, France

Preliminary examiners

Professor Keren Censor-Hillel – Technion Israel Institute of Technology

Professor Fabian Kuhn – Albert-Ludwigs-Universität Freiburg

During my doctoral research, I shared my time between Gran Sasso Science

Institute (GSSI), Italy, and Institut de Recherche en Informatique Fondamentale

(IRIF), France.

Declaration

The author declares that most of the contents of this thesis are based on contents

published in co-authored papers.

More precisely, the content showed in Chapter 3 is a merge of the contents of

two articles. One has been published at SPAA 2017 [39] and invited to a special

issue of TOPC 2017. The other has been published at DISC 2017 [32].

The content of Chapter 4 is still unpublished.

The content of Chapters 5 and 6 are based on an article published in the pro-

ceeding of SIROCCO 2016 [12].

The remaining of the thesis is a reelaboration and extension of the content pub-

lished in the aforementioned papers.

Abstract

The CONGEST model for distributed network computing is well suited for an-

alyzing the impact of limiting the throughput of a network on its capacity to

solve tasks efficiently. Many problems that are trivial when the bandwidth is

not constrained become hard when imposing such constraints. For example,

even distributedly detecting the presence of a cycle of length 4 may require a

lot of bandwidth, and in fact, if the bandwidth is of O(log n) bits, it requires

Ω̃(
√

n) rounds of computation. In this thesis we study problems related to con-

gestion in distributed computing.

At first, we address problems related to subgraph detection, by showing effi-

cient algorithnms that are able to distributedly detect fixed patterns in the com-

munication graph. We initially show how to detect any fixed tree T of constant

size in a constant number of rounds. We then apply this result to distributed

property testing, by showing that for a wide category of graph patterns H we

can test in constant time whether the graph is far from being H-free.

After, we further examine the role of the bandwidth in distributed computing,

by investigating how much the speed of a distributed algorithm can scale while

changing the amount of allowed bandwidth. First, we show that different prob-

lems can benefit differently from having more bandwidth. We adapt existing

distributed algorithms designed to use messages of size O(log n) to being time

efficient when messages are bigger. Then, we show that, in some limit cases,

having more bandwidth can not help at all.

Then, we study problems related to the Core-Periphery model. First, we give

tradeoffs between the number of edges and the number of rounds required to

emulate the Congested Clique model, by characterizing graphs that are able to

emulate the clique communication efficiently. Then, we show an efficient way

to solve the Minimum Spanning Tree construction problem in this model.

1

Acknowledgements

I would like to express my sincere gratitude to my advisor, Pierre Fraigniaud,

for all his help and continuous support. I would like to gratefully acknowledge

his guidance and encouragement during my Ph.D., as without them, this thesis

would not have been possible.

A special thanks goes to Michele Flammini and Zvi Lotker, for all their help and

support during these years.

Thanks to Rocco De Nicola for all his support.

Thanks are due to all my colleagues and researchers at GSSI and IRIF: Alex

Bredariol Grilo, Feliciano Collela, Simon Collet, Gianlorenzo D’Angelo, Lau-

rent Feuilloley, Bruno Guillon, Juho Hirvonen, Maria Rita Iacò, Emilio Incerto,

Bruno Karelovic, Alessandro Luongo, Fabian Reiter, Pablo Rotondo, Anna Carla

Russo, Gian Luca Scoccia, Catia Trubiani, and Cosimo Vinci.

Thanks to Keren Censor-Hillel and Fabian Kuhn for reviewing my thesis.

I would like to thank my family for always supporting me.

Finally, my deepest thanks to Alkida Balliu.

3

Contents

Abstract 1

Acknowledgements 3

List of Figures 7

1 Introduction 9
1.1 Setting . 10
1.2 Subgraph Detection . 14
1.3 Tradeoffs Between Bandwidth and Time 16
1.4 Clique Emulation . 18
1.5 Minimum Spanning Tree Construction 19

2 Model and Definitions 21
2.1 The CONGEST Model . 21
2.2 The Congested Clique . 22
2.3 Property Testing . 23
2.4 Distributed Property Testing . 25
2.5 Core-Periphery Networks . 26
2.6 Minimum Spanning Tree . 27
2.7 Single Source Shortest Path . 29
2.8 All Pairs Shortest Paths . 30

3 Subgraph Detection 31
3.1 Introduction . 31
3.2 Our Goal . 34
3.3 Results . 36
3.4 Detecting the Presence of Trees . 39
3.5 Distributed Property Testing . 45
3.6 Conclusions . 49

4 Tradeoffs Between Bandwidth and Time 51
4.1 Introduction . 51
4.2 Our Goal . 52
4.3 Results . 53
4.4 All Pairs Shortest Paths . 55

5

4.5 Minimum Spanning Tree . 56
4.6 Single Source Shortest Path . 59
4.7 Distancek . 62
4.8 Conclusions . 66

5 Clique Emulation 67
5.1 Introduction . 67
5.2 Our Goal . 68
5.3 Results . 69
5.4 Related Work . 69
5.5 Deterministic Construction . 70
5.6 Randomized Construction . 74
5.7 Conclusions . 78

6 MST In Core-Periphery Networks 79
6.1 Introduction . 79
6.2 Results . 80
6.3 MST Construction . 80
6.4 Conclusions . 87

7 Conclusions and Open Problems 89

List of Figures

2.1 Example of ε-farness . 24
2.2 Example of a Core-Periphery network 27
2.3 Example of an MST . 28

3.1 A lollipop graph . 37
3.2 Example of graphs composed by a tree, an edge, and arbitrary

connections between them . 39

4.1 Complexity of MST as a function of the available bandwidth . . . 59
4.2 Example of an instance of the Distancek problem 63
4.3 Example of reduction from Pointerk to Distancek 65
4.4 Complexity of Distancek as a function of the available bandwidth 65

5.1 Axiom 2 of Core Periphery networks 68
5.2 Example of Johnson graph . 71
5.3 Emulation of a removed edge . 71
5.4 Emulation of K9 with K3,6 . 72
5.5 Number of edges necessary to emulate the clique communication 74

6.1 Graphs that satisfy only 2 axioms of Core-Periphery networks . . 80

7

Chapter 1

Introduction

A distributed system is composed by entities that cooperate to achieve a com-

mon goal. Usually, an entity is assumed to be a computing device that has a

processor and its private memory. However, distributed systems are studied in

various areas, such as biology, where entities may be cells or insects. The field

that studies how entities can solve problems in distributed systems is called

distributed computing.

Due to the fact that these networks may be huge (think about the Internet or

about social networks), determining whether the network satisfies some spe-

cific property may be challenging. An example is the problem of pattern detec-

tion, where we want to distributedly detect if the network contains or not some

specific pattern. This problem has many applications in the real world. For

example, in the context of networking, a pattern may reveal some anomaly in

the network, like a cycle in the routing tables. In the context of social networks,

a pattern may give useful information about the population, for example the

presence of a clique reveals a group of friends that all know each other. In

chemistry, detecting patterns allows to find similarities between chemical com-

pounds. In this thesis, we study pattern detection in the context of distributed

property testing, where we are allowed to lose precision on the result for gaining

computational time. In this context, we first show how to efficiently detect trees

of any constant size. Then, we present a distributed algorithm able to detect any

pattern composed by a couple of nodes connected to a fixed tree in an arbitrary

manner. Although this family of patterns may look artificial, notice that this is

9

10 Introduction

not the case. In fact, it includes important patterns like cycles, the clique of size

four, and complete bipartite graphs K2,k for any k ≥ 1.

An important aspect of a network is its ability to allow entities to communicate

efficiently. By allowing all entities to communicate with each other, and thus

by supporting an efficient all-to-all communication, we can design simple and

efficient algorithms that ignore all communication issues and delegate them to

the network itself. If the communication graph is a clique, then all nodes can

communicate with each other easily, but, unfortunately, if the communication

graph is sparse, the all-to-all communication becomes challenging. Notice that,

in real world networks, connecting all entities to each other may be too costly,

since the number of links would be quadratic in the number of entities. For this

reason, in this thesis we study tradeoffs between the number of links and the

time required to emulate the all-to-all communication. This task becomes chal-

lenging when we consider communication links of limited capacity. In fact, our

challenge consists of carefully choosing routing paths that avoid bottlenecks.

In distributed computing, the amount of available bandwidth plays an impor-

tant role on the ability to solve tasks efficiently. Unfortunately, for many prob-

lems our current knowledge is limited to specific cases where the bandwidth

is either logarithmic in the size of the network, or it is unbounded. We make a

step forward in understanding the influence of the bandwidth, by establishing

tradeoffs between the bandwidth and the time required to solve a task. For this

purpose, we study different important distributed problems and analyze how

the bandwidth affects their running time. We show that different problems are

differently influenced by the amount of bandwidth allowed: there are problems

for which their running time fully scales with the amount of bandwidth, there

are problems that scale but not linearly, and there are tasks that do not benefit

at all from having more bandwidth.

1.1 Setting

This thesis studies problems related to distributed computing, where the nodes of

a network cooperate to solve a problem by executing a distributed algorithm.

We consider the CONGEST model [80], a synchronous model where nodes are

Introduction 11

considered to be fault-free and capable of doing an arbitrary amount of compu-

tation at each round. The main restriction imposed by the CONGEST model is

to limit the amount of data that can be transferred by the nodes at each round.

This model is well suited for analyzing the impact of the bandwidth on the time

required to solve a task, while ignoring other problems related to synchroniza-

tion and faults. Another well studied model in distributed computing is the

so-called LOCAL model, that is, the CONGEST model with no restriction on the

size of the messages [80].

In the general distributed synchronous model, a network can be represented as

a graph, where nodes are machines and edges are connections between them.

Two machines are considered to be neighbors if they have a communication

link connecting them.

Each machine executes the same algorithm and has its own private memory,

and in order to share data between different machines it is necessary to trans-

mit messages. We assume that the computation starts at the same time and

proceeds in synchronous rounds, where at each round each machine can send

a different message to each neighbor. In other words, machines have access to

a global clock, messages are always delivered in a fixed amount of time, and

the computation that each machine performs between rounds requires a fixed

amount of time. We do not restrict the amount of memory or the amount of

computation allowed to each machine and we assume that the machines never

crash or exhibit Byzantine faults. Machines have unique identifiers and may

have access to private or shared random bits.

In the CONGEST model, the only added restriction is on the size of the mes-

sages. Typically messages are chosen to be bounded to O(log n) bits, where n

is the number of nodes of the network. This seems to be the minimum reason-

able amount required to solve tasks, because it is enough for transmitting, in

a single round, a constant number of identifiers, or weights of edges. By ab-

stracting away all the problems that a distributed network could exhibit and by

considering only the problem related to congestion, this model is well suited

for analyzing the amount of bandwidth required to solve a task distributedly.

To each node may be provided some input, that could be for example a labeling,

or a weight for each of its incident edges. The complexity of a task is measured

by the number of rounds required to solve it. Notice that, if the input provided

12 Introduction

to each node has a reasonable size, in O(n2) rounds it is possible to solve any

problem by just broadcasting the input and the graph structure, gather every-

thing on some fixed node, and finally solve the task locally.

Typically, in the CONGEST model, the time complexity of problems is analyzed

for the case where the bandwidth is set to be O(log n). Apart from design-

ing algorithms for this model, a lot of effort is put on providing lower bounds,

usually by reducing some communication complexity problem to the required

distributed task. Often in this case the lower bounds directly depend on the

bandwidth limit. For example, for the Minimum Spanning Tree construction

task is proved a lower bound of Ω(
√ n

B) [22], where B is the bandwidth con-

straint.

Another model worth of interest is the Congested Clique one, where problems

related to distance are abstracted away. In this model it is assumed to have

a fully connected network, thus allowing each node to communicate to each

other node directly in one round.

A similar model is the Core-Periphery one, where there are two sets of nodes,

the Core and the Periphery, and it is assumed that three axioms hold. The

clique emulation axiom ensures that the Core nodes can communicate efficiently

between them. The Periphery-Core convergecast axiom ensures that Periphery

nodes can communicate efficiently with the Core nodes. Then, the core bound-

ary axiom gives some constraint on the size of the Core. This model allows to

design efficient distributed algorithms, while (differently from the Congested

Clique) keeping the total number of edges small.

Usually, problems are classified as global or local. Global problems are related

to global properties of a graph, that is, properties that require a time propor-

tional to the diameter of the graph in order to be checked. For example, dis-

tributedly knowing if the communication graph is a tree, is a task that requires

global knowledge. Other global problems are Minimum Spanning Tree construc-

tion, Shortest Paths and Maximum Matching.

Local problems are related to properties that depend only on the local neigh-

borhood of a node. Although local problems seem easier than global ones, they

become hard when imposing a limit on the bandwidth. For example, detecting

a cycle of length 4 is trivial if the bandwidth is unbounded (in two rounds each

node can gather all the required information), but in the CONGEST model, using

Introduction 13

O(log n) bits per message, it requires Ω(
√

n
B) rounds [24]. Another example of

a local problem is Maximal Matching.

Another useful classification is the one between construction and decision prob-

lems. In construction problems we are given a graph, possibly some input to

each node, and the nodes have to build a new distributed structure. For exam-

ple, we may want that the nodes distributely construct a Minimum Spanning

Tree of the communication network, or find a maximal matching between them.

In decision problems, instead, the nodes should cooperate to decide if the graph

satisfies some property. Also in this case, nodes may have some input labeling.

Typically, it is required that if the graph satisfies the property, all nodes output

“accept”, while if the graph does not satisfy the property, at least one node out-

puts “reject”. Usually decision problems are hard, as they may require a lot of

bandwidth or some global knowledge of the graph. Thus, a natural relaxation

arises: instead of requiring to distinguish whether a graph satisfies or not a

property, it is just required to distinguish whether a graph satisfies a property,

or if it is far from satisfying it. This relaxation is called property testing. For exam-

ple, detecting whether a graph is a tree or not requires global knowledge, while

detecting a cycle in a graph that contains a large number of cycles is easier and

can be performed in logarithmic time [17, 32]. Another example is detecting

cycles of length 4, that, even if it is a local problem, requires polynomial time

in the CONGEST model [24]. If we relax the problem and we want that nodes

reject only when there is a big number (proportional to the number of edges of

the graph) of cycles of length 4, the problem becomes solvable in constant time

[40, 39].

In this thesis we study different aspects of distributed computing related to the

CONGEST model.

• In Chapter 3 we study problems related to subgraph detection, provid-

ing algorithms able to detect the presence of any fixed tree as a subgraph

of the communication graph, in the classical CONGEST model. Also, it is

presented an algorithm able to detect the presence of more complex sub-

graphs, in the context of property testing. This chapter is based on results

published in [39] and [32].

• In Chapter 4 we address some questions related to time complexity in

the CONGEST model. More precisely, since often upper bounds are given

14 Introduction

only for the case where the bandwidth is constrained to be O(log n), we

analyze how the time complexity of existing algorithms can scale when

more bandwidth is allowed. We show that the complexity of different

problems can scale in different ways, and that in some limit cases, up to

some point, more bandwidth does not help at all. This chapter is based on

[76].

• In Chapters 5 and 6 we study problems related to the Core-Periphery model.

First, we give tradeoffs between the number of edges and the number of

rounds required to emulate the Congested Clique model, by characteriz-

ing graphs that are able to emulate the clique communication efficiently.

Then, we show an efficient way to solve the Minimum Spanning Tree con-

struction problem in this model. This chapter is based on results pub-

lished in [12].

Other works done during my doctoral research regard distributed verification

in the LOCAL model [9] and algorithmic game theory [10, 11].

1.2 Subgraph Detection

Consider a fixed graph H = (V(H), E(H)) and a bigger communication net-

work represented by a graph G = (V(G), E(G)). In this thesis we investigate

techniques that can be used to distributedly decide if G is H-free, i.e., if it does

not contain H as a subgraph. This problem has been investigated in many

frameworks, like classical sequential computing [2] or property testing [3]. For

example, in sequential computing, for deciding whether a graph H is a sub-

graph of G, where both H and G are part of the input, the best known bound is

exponential [84]. This bound becomes polynomial when H is fixed and only G

is part of the input, and even linear if G is planar [29]. If H is a path of length k,

the problem is fixed-parameter tractable, having a complexity of O(nk!) [72].

In the context of distributed computing, deciding H-freeness means that the

nodes of a network should cooperate to decide whether H is a subgraph of G,

satisfying the following constraint:

• if G is H-free then every node outputs accept;

Introduction 15

• otherwise, at least one node outputs reject.

H-freeness has been widely studied in the CONGEST model, and even for very

simple graph patterns H like C4, it has been observed that it may require a lot

of bandwidth. In fact, Drucker et al. [24] showed a bound of Θ̃(
√

n)1 rounds in

n-node networks. The intuition behind this lower bound is that the bandwidth

limitation prevents the nodes with high degree to send their list of neighbors

on a single communication link, unless consuming a lot of rounds.

When a lower bound is provided, a natural research direction is to find a way to

overcome the hardness result. Usually, when the problem is relaxed by restrict-

ing the input instances or allowing approximated results, much more efficient

solutions arise. In the sequential setting, a relaxation of the subgraph detection

problem requires to distinguish whether G is H-free, or if G is far from being

H-free. This relaxation, called property testing, allows to detect some subgraphs

in sublinear time. The measure of farness is given by the number of edges that

should be added or removed from G in order to make it H-free.

The property of H-freeness has been widely studied in the centralized property

testing. In dense graphs, by exploiting the graph removal lemma, it is possible

to show that we can decide H-freeness or induced H-freeness in constant time

for any subgraph H of constant size. On sparse graphs, subgraph detection is

harder. In fact, even detecting triangles requires Ω(n1/3) queries, and the best

known upper bound is O(n6/7) queries [4].

Distributed property testing has been introduced by Brakerski et al. [14] and

fully formalized for the CONGEST model by Censor-Hillel et al. [17]. They show

that, any tester designed for dense graphs for the centralized setting, can be

distributedly emulated with just a quadratic slowdown, if the property being

tested is non-disjointed. Notice that this allows to distributedly test H-freeness

in constant time for any H of constant size, in dense graphs. They then pro-

vide testers for sparse graphs, and, among the various results, they show that

triangle-freeness can be distributedly tested in constant time. Then, Fraigniaud

et al. [40] extended this work, by showing that for every connected graph H of

four vertices, H-freeness can be tested in constant time. However, the same pa-

per shows that the techniques used for testing H-freeness for 4-node graphs H

1We use Ω̃(·) to hide polylogarithmic factors in n.

16 Introduction

fail to test Ck-freeness or Kk-freeness in a constant number of rounds, whenever

k ≥ 5.

In this thesis we investigate for which patterns H it is possible to efficiently

and distributedly decide if a graph is H-free. Since detecting cycles is proven

to require a lot of time, we first focus on trees and try to answer the following

question:

For which trees T is it possible to decide T-freeness efficiently in

the CONGEST model, that is, in a number of rounds independent

from the size n of the underlying network?

At a first glance, deciding T freeness may look simpler than detecting a cy-

cle, since we do not have to find a path having the constraint of starting and

ending at the same node. However, even deciding Pk-freeness, where Pk is a

path of length k, requires to overcome many obstacles. First, finding a longest

simple path in a graph is NP-hard, which suggests that it is unlikely that an al-

gorithm deciding Pk-freeness exists in the CONGEST model, with running time

polynomial in k at every node. Second, and more importantly, there exists po-

tentially up to Θ(nk) paths of length k in a network, which makes it impossible

to maintain all of them in partial solutions, as the overall bandwidth of n-node

networks is at most O(n2 log n) in the CONGEST model.

We then study a relaxation of this problem, by trying to understand for which

patterns H we can test H-freeness in the context of distributed property test-

ing. In fact, Fraigniaud et al. [40] proved that their techniques can not work for

testing H-freeness for graphs with more than 4 nodes. Thus, we address the

following question:

For which graph patterns H is it possible to test H-freeness effi-

ciently in the context of distributed property testing?

1.3 Tradeoffs Between Bandwidth and Time

Typically, in the CONGEST model, O(log n) is chosen to be the maximum amount

of bits that two neighbors can exchange in a single round. In real networks the

Introduction 17

amount of available bandwidth may be different, and in some cases one may

prefer to send less and bigger messages, since the latency could heavily impact

the running time. Thus, it is reasonable to ask whether the existing algorithms

designed for the CONGEST model can be adapted to use messages of different

sizes, and what is their performance in this case.

For example, one famous result in the CONGEST model is a minimum-weight

spanning tree construction algorithm that performs in O(D+
√

n log∗ n) rounds

in diameter-D n-node networks [62]. It is known that the speed of this al-

gorithm can not scale linearly with the size of the messages, since there ex-

ists a lower bound of Ω(D +
√ n

B), where B is the maximum size of a mes-

sage. Also, for many problems there is a similar issue: lower bounds depend

on the bandwidth parameter B, but the algorithms are analyzed only for the

case where B = O(log n) bits. For example Becker et al. [13] showed how to

find a (1 + ε) approximation for the Single Source Shortest Path problem in

Õ(ε−O(1) (n
1
2 + D))2 rounds, using messages of size O(log n), while the lower

bound depends on B, and is Ω(D +
√ n

B) [22]. Similarly, for the All Pairs Short-

est Path problem, we can find a solution in O(n) rounds [55, 81, 68], while the

lower bound is B-dependant, and is Ω(n
B) [43].

In this thesis we investigate tradeoffs between the round complexity for solving

a task and the bandwidth of the links. First, we investigate the round complex-

ity of existing problems, such as Minimum Spanning Tree, Single Source Short-

est Path and All Pairs Shortest Paths, by establishing tradeoffs between the size

of the messages B and the number of rounds, by providing algorithms for the

CONGEST model, having round complexities that are parametric on B. Thus,

we address the following question:

How well existing algorithms designed for the Minimum Span-

ning Tree construction, Single Source Shortest Path and All Pairs

Shortest Paths problems behave when more bandwidth is al-

lowed?

Then, we further investigate the role of B in the CONGEST model, and try to

figure out if B has always some impact on the round complexity. For exam-

ple, consider two nodes that are at a distance that is equal to the diameter of

2We use Õ(·) to hide polylogarithmic factors in n.

18 Introduction

the graph. Trivially, if they want to share just one bit, they need to wait a time

proportional to the diameter of the graph, and even by allowing more band-

width they can not solve the problem faster. We want to better understand this

phenomenon and address the following question:

Are there problems that can not benefit from the presence of more

bandwidth, that are unrelated to trivial bounds related to dis-

tances?

1.4 Clique Emulation

A model similar to the CONGEST is the Congested Clique, where problems re-

lated to distances are abstracted away. In this model, the communication graph

is a clique, i.e., all nodes can communicate with every other node in a single

round. This abstraction allows to solve many tasks very efficiently, for example

a Minimum Spanning Tree can be constructed in O(log log n) rounds determin-

istically [69], and O(1) rounds [59] if randomization is allowed (notice that even

for diameter 3 graphs there is a polynomial lower bound [70]).

Since the number of edges is quadratic in the number of nodes, one may think

that this model is too powerful and of limited practical utility. Contrarily, in

[52] it is shown that, under some restrictions, fast algorithms for the Congested

Clique model can be translated into fast algorithms in the MapReduce frame-

work. Also, Avin et al. [8] proposed a novel network architecture for parallel

and distributed computing, called Core-Periphery networks, that resembles the

Congested Clique, but it is easier to use it in practice, since in this model the to-

tal number of edges is linear in the number of nodes. A part of this network,

called core, is capable to emulate algorithms designed for the Congested Clique

model. Thus, algorithms designed for the Congested Clique model can in fact

have practical utility.

Core-Periphery networks are described implicitly by providing three axioms.

One of these axioms requires that the core C satisfies the following:

Clique emulation: the core can emulate the clique in a constant number of

rounds in the CONGEST model. That is, there is a communication pro-

tocol running in a constant number of rounds in the CONGEST model such

Introduction 19

that, assuming that each node v ∈ C has a message Mv,w on O(log n) bits

for every w ∈ C, then, after O(1) rounds, every w ∈ C has received all

messages Mv,w, for all v ∈ C. In other words, the all-to-all communication

pattern can be implemented in a constant number of rounds.

Given this axiomatic description, it is not specified how to actually build a

graph that can satisfy the requirements. In other words, if we want to build

a Core-Periphery network, we need to find a graph and a routing schema asso-

ciated to this graph, that is able to satisfy the axiom efficiently.

Due to the existence of very efficient algorithms designed for graphs that allow

a fast all-to-all communication, and their applicability to different models, like

the Core-Periphery one, it is a natural question to ask which graphs are good

candidates to emulate the clique. In this thesis, we aim at establishing tradeoffs

between the number of edges of a graph, and the capability of emulating the

clique. Thus, we address the following questions:

What is the minimum number of edges that a graph must have

in order to be able to emulate the clique communication in k

rounds?

Which graphs are capable to emulate the clique communication

efficiently?

1.5 Minimum Spanning Tree Construction

The Minimum Spanning Tree construction problem is well studied in many

frameworks. In this problem we are given a graph G, a function w that maps

edges to weights, and we want to find a tree containing all the nodes while hav-

ing minimum weight. The weight of a tree is given by the sum of the weights

of all its edges. In the distributed setting each node knows only its incident

edges and their weights, and the nodes should collaborate to construct a Mini-

mum Spanning Tree efficiently. At the end of the computation each node should

know which of its incident edges are part of the Minimum Spanning Tree.

20 Introduction

In the classical CONGEST model, it is possible to solve this problem in O(D +
√

n log∗ n) rounds [62] and this bound is essentially tight, due to the existence

of an Ω(
√

n
log n) lower bound [22]. In the Congested Clique model this problem

can be solved much faster, due to the presence of sublogarithmic algorithms

[69, 47, 59].

Avin et al. [8] showed that Core-Periphery networks can efficiently solve many

problems, one of which is the Minimum Spanning Tree construction task. In

fact, they provided a randomized algorithm that constructs an MST in O(log2 n)

rounds. They also showed that if any one of the three axioms that characterize

the Core-Periphery networks does not hold, then it is possible to prove poly-

nomial lower bounds. Notably, they do not provide lower bounds showing

that their algorithm is optimal. Thus, in this thesis we address the following

question:

How fast can an MST be constructed in Core-Periphery net-

works?

Chapter 2

Model and Definitions

2.1 The CONGEST Model

We consider the classical CONGEST model for distributed computing [80]. The

network is modeled as a connected simple graph (no self-loops, and no parallel

edges) where nodes are computing entities that can exchange messages along

the edges of the graph. Nodes may have assigned distinct identifiers in a range

polynomial in n, the size of the network. Hence, every identifier can be stored

on O(log n) bits.

This model is synchronous, that is, all nodes start the computation simultane-

ously and execute the same algorithm in a sequence of rounds. At each round,

each node:

• performs some individual computation,

• sends messages to neighbors in the network, and

• receives messages sent by neighbors.

The main constraint imposed by this model is a restriction on the bandwidth

of the links. At each round it is possible to transfer a limited amount of data

between neighbors. The model in which the messages are limited to B bits is

called CONGESTB. Typically B is chosen to be O(log n), and CONGEST is typi-

cally used to refer to the CONGESTO(log n) model.

21

22 Model and Definitions

The O(log n)-bit bound seems to be the minimum reasonable amount required

to solve tasks, because it is needed for transmit, in a single round, a constant

number of identifiers.

This model is well suited for analyzing the impact of limiting the throughput

of a network on its capacity to solve tasks efficiently. In fact, all other possible

issues are abstracted away: nodes have unlimited memory and computational

power, do not crash and do not exhibit a Byzantine behavior. Also, all synchro-

nization issues are ignored. The complexity of a distributed algorithm in the

CONGEST model is expressed in number of rounds.

Many famous problems have been investigated in the CONGEST model. Differ-

ent global problems share a common peculiarity: a lower bound of Ω(D +
√

n
log n)

rounds, even for just verifying if a given solution is correct, or for finding

an approximation [22]. Some problems of this type are the Minimum Span-

ning Tree Construction task, for which there exists a matching upper bound of

O(D +
√

n log∗ n) [62], and Single Source Shortest Path, for which it is possible

to find a (1 + ε) approximation in Õ(ε−O(1) (n
1
2 + D)) rounds [13].

A problem that seems much more local is C4 detection. This problem, in fact,

can be solved in constant time if each node can see its 2−hop neighborhood.

Unfortunately, without this assumption, an Ω(
√

n) lower bound and a match-

ing upper bound hold [24]. This shows that also local problems can heavily

suffer from bandwidth limitations.

2.2 The Congested Clique

A model similar to the CONGEST is the Congested Clique, where the communi-

cation graph is a clique and the same restrictions of the CONGEST model hold,

i.e., all nodes can communicate with all the other nodes in one round using mes-

sages of size B. A close but more restrictive model is the Broadcast Congested

Clique, where each node is restricted to send the same message to all the other

nodes.

Various results are known for this model. Lenzen [65] investigated the routing

and sorting problems, showing a deterministic algorithm that, if each node is

the sender and receiver of at most n messages, allows to route all the messages

Model and Definitions 23

in O(1) rounds in a clique of size n using messages of size O(log n) bits. He

also showed an algorithm that allows to sort n2 keys in constant time. Drucker

et al. [24] proved that the Congested Clique is powerful enough to emulate cer-

tain classes of bounded depth circuits, which shows how difficult it is to find

lower bounds for the Congested Clique. In the case where each node can only

broadcast, [24] gives upper and lower bounds for the problem of detecting some

types of subgraphs. Hegeman et al. [53] investigated the metric facility loca-

tion problem providing a O(1) approximation algorithm that runs in expected

O(log log log n) rounds. They also showed how to compute a 3-ruling set in the

Congested Clique. In [52] it is shown that, under some restrictions, fast algo-

rithms for the Congested Clique model can be translated into fast algorithms in

the MapReduce framework. Censor-Hillel et al. [18] showed that matrix mul-

tiplication on Congested Clique can be computed in O(n1−2/ω) rounds, where

ω < 2.3728639 is the exponent of matrix multiplication. Also, they showed

how to use matrix multiplication to solve a variety of graph related problems.

In [69] Lotker et al. provided a deterministic Minimum Spanning Tree construc-

tion algorithm that runs in O(log log n) rounds in the Congested Clique. Then,

Hegeman et al. [51] showed that in this context randomization can help, giving

a randomized algorithm that requires O(log log log n) rounds. Then, this com-

plexity was even reduced further to O(log∗ n) in [47], and finally to O(1) [59].

2.3 Property Testing

In the sequential setting, property testing aims to provide efficient mechanisms

able to decide whether a data structure satisfies a given property. In the context

of graphs, a tester is a centralized algorithm A that, given the ability to perform

queries on the graph, where a query can ask what is the degree of a node, or

ask the i−th neighbor of a node, must decide whether or not the graph satisfies

the given property. The complexity is measured by the number of queries that

the tester must perform before providing the result.

In the context of property testing, the requirements are relaxed: the tester should

distinguish between instances satisfying the property, and instances that are far

from satisfying that property. Different notions of farness have been considered:

24 Model and Definitions

• In the dense model, given any ε ∈ (0, 1), an n-node m-edge network G is

said to be ε-far from satisfying a graph property P if adding and/or re-

moving at most εn2 edges to/from G cannot result in a network satisfying

P .

• In the sparse model, given any ε ∈ (0, 1), an n-node m-edge network G is

said to be ε-far from satisfying a graph property P if adding and/or re-

moving at most εm edges to/from G cannot result in a network satisfying

P .

In Figure 2.1 it is shown an example of a triangle-free graph, a graph that is far

from being triangle-free, and a graph that is neither triangle-free, nor far from

being triangle-free.

FIGURE 2.1: (left) A triangle-free graph. (center) A graph that is far from being
triangle-free. (right) A non-triangle-free graph.

A tester for a graph property P is a randomized algorithm A that is required

to accept or reject any given network instance, under the following two con-

straints:

• G satisfies P =⇒ Pr[A accepts G] ≥ 2/3 ;

• G is ε-far from satisfying P =⇒ Pr[A rejects G] ≥ 2/3.

If the graph does not satisfy a property, but it is not far from satisfying it, the

algorithm can both accept or reject. Notice that the success guarantee 2/3 is

arbitrary, since it is possible to boost any success guarantee by repetition.

Hence, a tester for P is a mechanism enabling to detect degraded instances

(i.e., instances that are far from satisfying a desired property P) with arbitrarily

large probability, while correct instances are accepted also with arbitrarily large

probability.

Model and Definitions 25

A tester has 1-sided error if:

• G satisfies P =⇒ Pr[A accepts G] = 1;

• G is ε-far from satisfying P =⇒ Pr[A rejects G] ≥ 2/3.

A well studied problem is H-freeness, where we want to know if a graph G

contains H or not as a subgraph. In the dense model, using the so called graph

removal lemma, it is possible to test H-freeness in constant time for any H of

constant size. Essentially, this lemma says that if a graph is far from being H-

free, than it must contain a very high number of copies of H [30, 3, 5, 20]. In the

sparse model, subgraph detection is harder. Even detecting triangles requires

Ω(n1/3) queries, and the best known upper bound is O(n6/7) queries [4].

2.4 Distributed Property Testing

Let P be a graph property like, e.g., planarity, cycle-freeness, bipartiteness, Ck-

freeness, etc. Let ε ∈ (0, 1).

A distributed property testing algorithm for P is a randomized algorithm, run-

ning in the CONGEST model, which performs as follows. Initially, every node

is only given its ID as input. After a certain number of rounds, every node

must output a value in {accept, reject}. The algorithm is correct if and only if

the following two conditions are satisfied:

• G satisfies P =⇒ Pr[every node outputs accept] = 1;

• G is ε-far from satisfying P =⇒ Pr[at least one node outputs reject] ≥ 2/3.

Like in centralized property testing, in the distributed setting H-freeness is easy

in the dense model. In fact, it is possible to test H-freeness in constant time for

any H of constant size [17]. Although no lower bounds are known, H-freeness

in the sparse model seems harder, and only results regarding graphs H of at

most four nodes are known [17, 40].

26 Model and Definitions

2.5 Core-Periphery Networks

Core-Periphery is a novel network architecture for parallel and distributed com-

puting, proposed by Avin, Borokhovich, Lotker, and Peleg [8]. This architec-

ture is not described explicitly, but rather implicitly by providing three axioms.

Specifically, a Core-Periphery network G = (V, E) has its node set partitioned

into a core C and a periphery P, and the three properties to be satisfied are then

the following:

1. Core boundary: For every node v ∈ C, degC(v) ' 1 degP(v), where, for

S ⊆ V and v ∈ V, degS(v) denotes the number of neighbors of v in S.

2. Clique emulation: the core can emulate the clique in a constant number

of rounds in the CONGEST model. That is, there is a communication pro-

tocol running in a constant number of rounds in the CONGEST model such

that, assuming that each node v ∈ C has a message Mv,w on O(log n) bits

for every w ∈ C, then, after O(1) rounds, every w ∈ C has received all

messages Mv,w, for all v ∈ C. In other words, the all-to-all communication

pattern can be implemented in a constant number of rounds.

3. Periphery-core convergecast: there is a communication protocol running

in a constant number of rounds in the CONGEST model such that, assum-

ing that each node v ∈ P has a message Mv on O(log n) bits, then, after

O(1) rounds, for every v ∈ P, at least one node in the core has received

Mv.

Figure 2.2 provides an example of a Core-Periphery network, i.e., a graph satis-

fying the three axioms.

As shown in [8], these three axioms allow to design efficient distributed algo-

rithms in the CONGEST model for classical problems such as matrix multiplica-

tion and Minimum Spanning Tree construction. Interestingly, it is shown that

if only two out of three axioms were satisfied, then the round complexity of

all the considered problems would increase quite significantly. For example, it

is provided an algorithm for the Minimum Spanning Tree construction prob-

lem, that, in graphs that satisfy these three axioms, solves the task in O(log2 n)

1We assume a ' b iff a
b+1 = Θ(1)

Model and Definitions 27

FIGURE 2.2: Example of a Core-sPeriphery network, where the core (gray
nodes) is a clique, and the periphery (white nodes) is a sparse graph.

rounds, while, if only two out of three axioms were satisfied, then the Minimum

Spanning Tree construction would require at least Ω̃(n
1
4) rounds.

The Core-Periphery model provides an attractive alternative to the Congested

Clique model. Indeed, the n-node Congested Clique has (n
2) edges, while, as-

suming a core with, e.g., O(
√

n) nodes, even connecting all nodes in the core

as a clique would only result in O(n) edges in the core, a number that is much

more manageable in practice, while still allowing efficient computation.

2.6 Minimum Spanning Tree

For the distributed Minimum Spanning Tree (MST) construction task, every

node is given as input the weight w(e) of each of its incident edges e. These

weights are supposed to be of values polynomial in the size n of the network

G = (V, E, w), and thus each weight can be stored on O(log n) bits. The output

of every node is a set of incident edges, such that the collection of all outputs

forms an MST of the network. An MST is a subset of edges T ⊆ E such that

(V, T) is connected and ∑e∈T w(e) is minimum. At the end of the computation

28 Model and Definitions

each node must know which of its adjacent edges belong to the MST. In Figure

2.3 is depicted an example of MST.

24

27

21 28

30 29

22

23

25

11

7

15

13

8

10

12 5

3

14

1

4
9

2

6

19

17

16

20

18

105

14

9

8 712

3

1

16 13

6

4

2

15

11

FIGURE 2.3: Example of a graph and its MST (in red).

The distributed MST construction problem has been widely studied. In the dis-

tributed asynchronous context, Gallager, Humblet and Spira [44] show an al-

gorithm with time complexity of O(n log n) that uses O(|E|+ n log n)-bit mes-

sages, which is essentially optimal (under some assumptions we can actually

break the Ω(|E|) barrier [60]). In the synchronous setting, the first sublinear

algorithm was given by Garay et al. in [45]. Its running time is of O(D +

n
ln 3
ln 6 log∗ n), that is approximately O(D+ n0.61 log∗ n) rounds, where D is the di-

ameter of the graph. This complexity was later improved to O(D +
√

n log∗ n)

in [62]. Then, Peleg et al. [82] showed that this latter complexity is nearly opti-

mal, giving an Ω(D +
√

n
log n) lower bound, which was improved by Das Sarma

et al. [22] to Ω(D +
√

n
log n) and then by Ookawa et al. [77] to Ω(D +

√
n). All

these lower bounds hold for graphs with diameter Ω(log n). For constant di-

ameter graphs, there is a bound of Ω̃(n1/3) rounds for diameter 4, a bound of

Ω̃(n1/4) rounds for diameter 3, and a bound of O(log n) rounds for diameter 2

(see [70]). Then, Elkin [25] showed that, if termination detection is not required,

the diameter of the graph is not a lower bound, and that there exists an al-

gorithm that requires Õ(µ +
√

n) rounds, where µ is the so-called MST-radius

of the graph. Then, Pandurangan et al. [78] showed a randomized algorithm

that is able to construct a MST in Õ(D +
√

n) rounds while using an optimal

number of messages, Õ(|E|). Elkin [27] showed how to achieve the same result

Model and Definitions 29

deterministically. Notice that all the aforementioned algorithms use messages

of size B = O(log n), while some of the lower bounds have been explicitly

stated as a function of B. Among the various lower bounds, the best one that

depends on B is the one of Das Sarma et al. [22], that is Ω(D +
√ n

B). In the

Congested Clique, the MST problem can be solved much faster. In [69] Lotker

et al. provided a deterministic algorithm that runs in O(log log n) rounds in the

Congested Clique. Then, Hegeman et al. [51] gave a randomized algorithm that

requires O(log log log n) rounds. This complexity was even reduced further to

O(log∗ n) in [47]. They also showed that, by using slightly bigger messages,

the complexity becomes O(1) rounds. Finally, Jurdzinski and Nowicki gave a

constant time algorithm [59].

2.7 Single Source Shortest Path

In the distributed Single Source Shortest Path (SSSP) problem, given a node v,

all nodes of the graph have to find their distance from v.

For this problem, a linear-time exact solution can be found using the Bellman

& Ford Algorithm. The problem of finding an exact solution in sublinear time

remained opened for years, until when Elkin [26] gave an algorithm that is able

to solve the problem in O((n log n)
5
6) rounds for D = O(

√
n log n) and O(D

1
3 ·

(n log n)
2
3) rounds for larger diameters. The problem of finding an approximate

solution seems easier. In fact, Lenzen et al. [66] showed how to find an O(1
ε)

approximation in Õ(n
1
2+ε + D) rounds. Then, Nanongkai [73] improved this

result providing a randomized algorithm that finds a (1 + ε)-approximation

in Õ(n
1
2 · D 1

4 + D) rounds. Finally, Henzinger et al. [54] removed the multi-

plicative dependence on D, by giving a deterministic algorithm that solves the

problem in O(n
1
2+o(1) + D1+o(1)) rounds finding a (1 + o(1))−approximation.

Becker et al. [13] improved this complexity by showing how to find a (1 + ε)

approximation in Õ(ε−O(1) · (n 1
2 + D)) rounds. This last algorithm matches the

lower bound given by Das Sarma et al. [22], that is Ω(D +
√ n

B), but all the

aforementioned algorithms are for B = O(log n).

30 Model and Definitions

2.8 All Pairs Shortest Paths

In the distributed All Pairs Shortest Paths (APSP) problem, each node of the

network needs to find its distance from all the other nodes.

Frischknecht et al. [43] showed that, in dense graphs, the diameter can not

be computed in sublinear time (using small messages), by providing a lower

bound of Ω(n
B) rounds. This result implies a lower bound for the APSP prob-

lem as well. Then, Abboud et al. [1] provided an Ω̃(n) lower bound for B =

O(log n), even for sparse networks. Concerning upper bounds, Holzer et al. [55]

showed how to solve the APSP problem deterministically, in O(n) rounds, in

unweighted graphs. Nanongkai [73] presented a randomized algorithm that

finds a (1 + o(1))-approximation in Õ(n) rounds in the weighted case. Lenzen

et al. [67] showed that a (1 + ε)-approximate solution can be deterministically

found in O(ε−2 · n log n) rounds.

Chapter 3

Subgraph Detection

In this chapter we study problems related to subgraph detection, providing

algorithms able to detect the presence of any fixed tree as a subgraph of the

communication graph, in the classical CONGEST model. Also, it is presented an

algorithm able to detect the presence of more complex subgraphs, in the context

of property testing. This chapter is based on results published in [39], where we

show how to test the presence of any cycle Ck of constant size k, and results

published in [32], where we push further the techniques of [39], by showing

how to test the presence of patterns composed by a couple of nodes connected

to a fixed tree in an arbitrary manner.

3.1 Introduction

Consider a fixed graph H = (V(H), E(H)), that could be for example a tri-

angle or a clique of four nodes. A graph G = (V(G), E(G)) is said to be

H-free if it does not contain H as a subgraph, where H is a subgraph of G

if V(H) ⊆ V(G) and E(H) ⊆ E(G). Detecting the presence of subgraphs,

or deciding subgraph freeness, has been investigated in many frameworks,

like classical sequential computing [2], parametrized complexity [72], stream-

ing [16], property-testing [3], communication complexity [58] and quantum

computing [7]. In the classical sequential computing, for the general problem of

detecting whether a graph H is a subgraph of G, where both H and G are part

of the input, the best know bound is exponential [84]. Faster algorithms for

31

32 Subgraph detection

special cases of graphs H and G are known. For example, if H is a k-node tree,

and G is an n-node tree, then there is an O(k3/2

log k n)-time algorithm for deciding

whether H is a subgraph of G [83]. Subgraph detection becomes solvable in

polynomial time if H is fixed, and only G is part of the input. Moreover, for any

fixed H, subgraph detection can be solved in linear time in planar graphs [29].

In the case of general graphs, but where H = Pk, the path of length k, subgraph

detection can be solved in time O(nk!) [72].

In the context of distributed computing, deciding H-freeness means that the

nodes of a network should cooperate to decide whether H is a subgraph of G,

satisfying the following constraint:

• if G is H-free then every node outputs accept;

• otherwise, at least one node outputs reject.

That is, G is H-free if and only if all nodes output accept.

H freeness has been widely studied in the CONGEST model, for various types

of graph patterns (see, e.g., [17, 18, 23, 24, 57, 39, 40]). In particular, even for

very simple graph patterns H, it has been observed that deciding H freeness

may require a lot of bandwidth. For example, it has been shown in [24] that de-

ciding C4-freeness requires Ω̃(
√

n) rounds in n-node networks in the CONGEST

model. The intuition behind this lower bound is that the bandwidth limitation

prevents the nodes with high degree to send their list of neighbors on a sin-

gle communication link, unless consuming a lot of rounds. The lower bound

for C4-freeness can be extended to larger cycles Ck, k ≥ 4, obtaining a lower

bound of Ω(poly(n)) rounds, where the exponent of the polynomial in n de-

pends on k [24]. Similar bounds hold also in the Broadcast Congested Clique

model, and also for detecting cliques. Hence, not only “global” tasks such as

Minimum-weight Spanning Tree [22, 62, 77], diameter [1, 43], and All-Pairs

Shortest Paths [55, 67, 73] are bandwidth demanding, but also “local” tasks

such as deciding H-freeness are bandwidth demanding, at least for some graph

patterns H. Also triangle related problems seem hard: Izumi et al. [57] pro-

vided randomized algorithms for triangle detection and triangle listing in the

CONGEST model, with round complexity Õ(n2/3) and Õ(n3/4), respectively, and

established a lower bound of Ω̃(n1/3) on the round complexity of triangle list-

ing.

Subgraph detection 33

Subgraph detection has also been investigated in the Congested Clique model,

a variant of the CONGEST model which separates the communication network

(assumed to be a complete graph) from the input graph G. In [23], it is shown

that, for every k-node graph H, deciding whether H is a subgraph of an n-

node input graph G can be achieved in Õ(n1−2/k) rounds. Using an efficient

implementation of parallel matrix multiplication algorithms in the Congested

Clique, [18] improved the results in [23] for triangle detection (as well as for

C4-detection), via an algorithm running in O(n0.158) rounds.

As shown before, subgraph detection in the distributed setting is hard, since

there exist polynomial lower bounds based on communication complexity re-

sults. One way to overcome this difficulty is to relax the requirements. Instead

of requiring that at least one node rejects if G contains a copy of H, we require

that at least one node rejects if G is far from being H-free. This relaxation is in-

spired from the notion of property testing, that is used in the centralized setting

to solve decision tasks using a sublinear number of queries on the input.

The property of H-freeness has been the subject of a lot of investigation in classi-

cal (i.e., sequential) property testing. In the dense model, most solutions exploit

the graph removal lemma, which essentially states that, for every k-node graph

H, and every ε > 0, there exists δ > 0 such that every n-node graph contain-

ing at most δnk (induced) copies of H can be transformed into an (induced)

H-free graph by deleting at most εn2 edges. This lemma was first proved for

the case k = 3, and later generalized to subgraphs H of any size [30], and fur-

ther to induced subgraphs [3]. It is possible to exploit this lemma for testing the

presence of any (induced or not) subgraph of constant size, in constant time.

Notice that δ is a fast growing function of ε and k. The growth of the function

was later improved in [5] under some assumptions. For more details on the

graph removal lemma, see [20, 3, 30]. In the sparse model, subgraph detection is

harder. Even detecting triangles requires Ω(n1/3) queries, and the best known

upper bound is O(n6/7) queries [4] (the Ω(n1/3) lower bound holds even for 2-

sided error algorithms, and for detecting any non bipartite subgraph). There

exists a faster tester for cycle-detection in graphs of constant degree, as cycle-

freeness can be tested with a constant number of queries by a 2-sided error

algorithm [48]. However, testing cycle-freeness using 1-sided error algorithms

requires Ω(
√

n) queries [21].

34 Subgraph detection

Distributed property testing has been introduced in [14], where authors pro-

pose a constant-time distributed algorithm for finding a linear-size ε-near clique,

under the assumption that the graph contains a linear-size ε3-near clique (an

ε-near clique is a set of nodes where all but an ε fraction of pairs of nodes

have edges between them). Then, [17] fully formalized the notion of distributed

property testing in the CONGEST model. They show that, in the dense model,

any tester for a non-disjointed property can be emulated in the distributed set-

ting with just a quadratic slowdown, i.e., if a sequential tester makes q queries,

then it can be converted into a distributed tester that performs in O(q2) rounds.

This simulation exploits the fact that any dense tester can be converted to a

tester that first chooses some nodes uniformly at random, gathers their edges,

and then performs centralized analysis of the obtained data (see [49]). The same

paper also provides distributed testers for triangle-freeness, cycle-freeness, and

bipartiteness, in the sparse model, running in O(1), O(log n), and O(polylog n)

rounds, respectively. Then, Fraigniaud et al. [40] extended this work, by show-

ing that for every connected graph H of four vertices, H-freeness can be tested

in constant time. However, the same paper shows that the techniques used for

testing H-freeness for 4-node graphs H fail to test Ck-freeness or Kk-freeness in

a constant number of rounds, whenever k ≥ 5.

Distributed property testing fits into the larger framework of distributed decision.

The seminal paper [74] was perhaps the first to identify the connection between

the ability to locally check the correctness of a solution in a distributed man-

ner, and the ability to design an efficient deterministic distributed algorithm

for constructing a correct solution. Since then, there have been a huge amount

of contributions aiming at studying variants of distributed decision, in the de-

terministic setting (see, e.g., [38]), the anonymous setting (see, e.g., [28]), the

probabilistic setting (see, e.g., [34, 37]), the non-deterministic setting (see, e.g.,

[50, 61]), and even beyond (see, e.g., [9, 36]). We refer to [35] for a survey on

distributed decision.

3.2 Our Goal

The main objective of this work is to better understand for which patterns H

it is possible to efficiently decide if a graph is H-free. We focus our attention

Subgraph detection 35

to a generic set of H-freeness decision tasks which includes several instances

deserving full interest on their own right. In particular, deciding Pk-freeness,

where Pk denotes the k-node path, is directly related to the NP-hard problem

of computing the longest path in a graph. Also, detecting the presence of large

complete binary trees, or of large binomial trees, is of interest for implement-

ing classical techniques used in the design of efficient parallel algorithms (see,

e.g., [63]). Similarly, detecting large Polytrees in a Bayesian network might be

used to check fast belief propagation [79]. Finally, as it will be shown in this

work, detecting the presence of various forms of trees can be used to test the

presence of graph patterns of interest in the framework of distributed property

testing [17]. Hence, this work addresses the following question:

For which trees T is it possible to decide T-freeness efficiently in

the CONGEST model, that is, in a number of rounds independent

from the size n of the underlying network?

At a first glance, deciding T-freeness for some given tree T may look simpler

than detecting cycles, or even just deciding C4-freeness. Indeed, the absence

of cycles enables us to ignore the issue of checking that a path starts and ends

at the same node. This constraint is bandwidth consuming because it requires

maintaining all possible partial solutions corresponding to growing paths from

all starting nodes. Indeed, discarding even just a few starting nodes may result

in missing the unique cycle including these nodes. However, even deciding Pk-

freeness requires us to overcome many obstacles. First, as mentioned before,

finding a longest simple path in a graph is NP-hard, which implies that it is

unlikely that an algorithm deciding Pk-freeness exists in the CONGEST model,

with running time polynomial in k at every node. Second, and more impor-

tantly, there exists potentially up to Θ(nk) paths of length k in a network, which

makes impossible to maintain all of them in partial solutions, as the overall

bandwidth of n-node networks is at most O(n2 log n) in the CONGEST model.

We then study a relaxation of this problem, by trying to understand for which

patterns H we can test H-freeness in the context of distributed property test-

ing. It has been shown in [17] that, in the classical CONGEST model for dis-

tributed computing [80], there exists a distributed property testing algorithm

for triangle-freeness performing in O(1/ε2) rounds. This result has been ex-

tended in [40] where it is proved that there exists a distributed property testing

36 Subgraph detection

algorithm for C4-freeness performing in O(1/ε2) rounds as well. Perhaps sur-

prisingly, the techniques in [17, 40] do not extend to larger cycles. Indeed, using

explicit constructions of so-called Behrend graphs, it was proved in [40] that

these techniques fail for most values of k ≥ 5. That is, these techniques cannot

result in a tester whose runtime is constant in all graphs, even if the constant is

allowed to be a function of 1/ε. The existence of distributed property testing

algorithms which decide H-freeness in a constant number of rounds was left

open for graphs having more than 4 nodes. Hence, we address the following

question:

For which graph patterns H is it possible to test H-freeness effi-

ciently in the context of distributed property testing?

3.3 Results

We show that, in contrast to Ck-freeness, Pk-freeness can be decided in a con-

stant number of rounds, for any k ≥ 1. In fact, our main result is far more

general, as it applies to any tree. Stated informally, we prove the following:

Theorem 3.1. For every tree T, there exists a deterministic algorithm for deciding

T-freeness in a constant number of rounds under the CONGEST model.

Notice that, if we do not restrict the amount of bandwidth, then the problem

becomes easily solvable by just gathering the h-radius neighborhood, where h

is the height of T, and then checking everything locally. A different approach

could be the following. Each node v can start broadcasting, for every possible

leaf l of T, that v is a potential candidate to be the node l. Then, at each round,

each node considers all the possible subtrees of T, and sees which of them can

be constructed by merging some subtrees received from its neighbors at the pre-

vious round (notice that they must be disjoint), and setting itself to be the root

of the subtree. At last, each node sends all the possible valid subtrees that was

able to construct. By repeating this process a number of rounds proportional to

the height of T, nodes can detect the presence of T.

The main obstacle for implementing this algorithm in the CONGEST model is

that even collecting the identities of the nodes at distance 2 from a given node

Subgraph detection 37

u might be impossible to achieve in o(n) rounds in n-node network. Indeed,

u may have constant degree, with Ω(n) neighbors at distance 2 (e.g., node 7

in the lollipop graph of Figure 3.1). To overcome this difficulty, we proceed by

6

7 5 2 9

1
8

11

3
4

10

6

FIGURE 3.1: A lollipop graph.

pruning the set of information transmitted between nodes. This pruning is at

the risk of discarding candidates that would have turned out to be actual trees.

Nevertheless, our pruning mechanism guarantees that at least one actual tree

remains in the current set of candidates throughout the execution of the algo-

rithm. In fact, we present a distributed implementation of a pruning technique

based on a combinatorial result due to Erdős et al. [31] that roughly states the

following. Let k > t > 0. For any set V of n elements, and any collection F

of subsets of V, all with cardinality at most t, let us define a witness of F as a

collection F̂ ⊆ F of subsets of V such that, for any X ⊆ V with |X| ≤ k− t, the

following holds:

(
∃Y ∈ F : Y ∩ X = ∅

)
=⇒

(
∃Ŷ ∈ F̂ : Ŷ ∩ X = ∅

)
.

Of course, every F is a witness of itself. However, Erdős et al. have shown that,

for every k, t, and F, there exists a compact witness F̂ of F, that is, a witness

whose cardinality depends on k and t only, and hence is independent of n. To

see why this result is important for detecting a tree T in a network G, consider

V as the set of nodes of G, k as the number of nodes in T, and F as a collection of

subtrees Y of size at most t, each isomorphic to some subtree of T. The existence

of compact witnesses allows an algorithm to keep track of only a small subset F̂

of F. Indeed, if F contains a partial solution Y that can be extended into a global

solution isomorphic to T using a set of nodes X, then there is a representative

Ŷ ∈ F̂ of the partial solution Y ∈ F that can also be extended into a global

solution isomorphic to T using the same set X of nodes. Therefore, there is no

need to keep track of all partial solutions Y ∈ F, it is sufficient to keep track of

38 Subgraph detection

just the partial solutions Ŷ ∈ F̂. This pruning technique has been successfully

used for designing fixed-parameter tractable (FPT) algorithms for the longest

path problem [72].

Theorem 3.1, which establishes the existence of distributed algorithms for de-

tecting the presence of trees, has important consequences on the ability to test

the presence of more complex graph patterns in the context of distributed property-

testing. Recall that, for ε ∈ (0, 1), a graph G is ε-far from being H-free if remov-

ing less than a fraction ε of its edges cannot result in an H-free graph. In fact,

we obtain the following result.

Theorem 3.2. For every graph pattern H composed of an edge and a tree with arbitrary

connections between them, there exists a (randomized) distributed algorithm for testing

H-freeness in a constant number of rounds under the CONGEST model.

At a first glance, the family of graph patterns H composed of an edge and a

tree with arbitrary connections between them (like, e.g., the graph depicted on

the top-left corner of Fig. 3.2) may look quite specific and artificial. This is not

the case. For instance, every cycle Ck for k ≥ 3 is a “tree plus one edge”. This

also holds for 4-node complete graph K4. In fact, all known results about test-

ing H-freeness for some graph H in [17, 39, 40] are just direct consequence of

Theorem 3.2. Moreover, Theorem 3.2 enables us to test the presence of other

graph patterns, like the cycle Ck of length k, the complete bipartite graph K2,k

with k + 2 nodes, for every k ≥ 1, or the graph pattern depicted on the top-

right corner of Fig. 3.2, in O(1) rounds. It also enables us to test the presence

of connected 1-factors as a subgraph in O(1) rounds. (Recall that a graph H is

a 1-factor if its edges can be directed so that every node has out-degree 1). In

fact, our algorithm is 1-sided, that is, if G is H-free, then all nodes output accept

with probability 1.

Also, by carefully combining the previous results we can easily obtain the fol-

lowing:

Theorem 3.3. For every graph pattern H composed of a node and a tree with arbitrary

connections between them, there exists a distributed algorithm for deciding H-freeness

performing in O(n) rounds under the CONGEST model.

All our results are summarized on Table 3.1, together with some of the previous

work in the literature. These results appeared in [39] and [32]. In the former

Subgraph detection 39

T e

C3 CkK4

K2,k

FIGURE 3.2: All these graphs are composed of a tree T and edge e with arbi-
trary connections between them.

we presented a tester for Ck freeness, for any constant k ≥ 3, by providing

a distributed implementation of a result of Erdős et al. [31]. In the latter we

extended the result of [39], by showing the results stated in Theorems 3.1 and

3.2.

3.4 Detecting the Presence of Trees

In this section we establish our main result, i.e., Theorem 3.1, stated formally be-

low as Theorem 3.5. As a warm up, we first show a simple and elegant random-

ized algorithm for deciding T-freeness, for every given tree T, running in O(1)

rounds under the CONGEST model. Next, we show an algorithm that achieves

the same runtime, but deterministically.

40 Subgraph detection

Distributed detection Distr. property testing

Cycles Ck Ω(poly(n)) for k ≥ 4 [24] O(1) [17, 40] for k ≤ 4
O(n) [this work] O(1) [this work]

Cliques Kk Õ(n2/3) for K3 = C3 [57] O(1) for K3 & K4 [17, 40]
open for k ≥ 4 open for k ≥ 5

Trees O(1) [this work] O(1) [this work]

Trees-plus-one-node O(n) [this work] O(1) [this work]

Trees-plus-one-edge Θ̃(
√

n) for C4 [24] O(1) [this work]

Large pseudo-cliques open O(1) [14]

TABLE 3.1: Number of rounds for deciding H-freeness in the CONGEST model

A simple randomized algorithm

Theorem 3.4. For every tree T of constant size, there exists a 1-sided error randomized

algorithm performing in O(1) rounds in the CONGEST model, which correctly detects

if the given input network contains T as a subgraph, with probability at least 2/3.

Proof. The algorithm performs in a sequence of phases. Algorithm 1 displays a

phase of the algorithm.

Let k be the number of vertices of tree T, i.e., k = |V(T)|. Pick an arbitrary

vertex of T, and root T at that node. The root is labeled k. Then, label the rest of

the nodes of T in decreasing order according to the order obtained from a BFS

traversal starting from the root. For i ∈ [1, k], let Ti be the subtree of T rooted at

the node labeled i. Let child(i) denote the labels of all the nodes adjacent to i in

Ti (i.e., the labels of all the children of i in T). We use the color coding technique

introduced in [6] in the context of (classical) property testing. Each vertex u of

G picks a color in [1, k] uniformly at random. We say that G is well colored if at

Subgraph detection 41

least one of the subgraphs T′ of G that is isomorphic to T satisfies that the colors

of T′ correspond to the labels of the nodes in T. (Note that if G is T-free then G

is well colored, no matter the coloring).

In the verification algorithm, every vertex u is either active or inactive, which is

represented by a variable active(u) ∈ {true, false}. Initially, every node u is

inactive (i.e., active(u) = false). Intuitively, a node u becomes active if it has

detected that the graph contains the tree Tc as subgraph, rooted at u, where c is

the color of u. More precisely, once every node has picked a color in [1, k] u.a.r.,

all nodes exchange their colors between neighbors. Then Algorithm 1 performs

k rounds. At the beginning of each round, every node v communicates active(v)

to all its neighbors. In round c, 1 ≤ c ≤ k, each node u with color c checks

whether, for each color c′ of its children, some neighbor v is colored c′ and is

active. If that is the case, it becomes active, otherwise it remains inactive.

Algorithm 1 Randomized tree-detection, for a given tree T. Algorithm executed
by node u.

1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v
2: let k = |V(T)|, and pick color(u) ∈ [k] uniformly at random
3: send color(u) to all neighbors, and receive color(v) from every neighbor v
4: for every c ∈ [1, k], let Nc(u) = {v ∈ N(u) | color(v) = c}
5: active(u)← false
6: for c = 1 to k do
7: send active(u) to all neighbors, and receive active(v) from every neigh-

bor v
8: compute A(u) = {v ∈ N(u) | active(v) = true}
9: if color(u) = c and

(
∀c′ ∈ child(c), Nc′(u) ∩ A(u) 6= ∅

)
then

10: active(u)← true
11: end if
12: end for
13: if color(u) = k and active(u) = true then
14: output reject
15: else
16: output accept
17: end if

We claim that a well colored graph G contains T as a subgraph if and only

if a vertex colored k becomes active at round k. To establish that claim, note

first that, if c ∈ [1, k] is a leaf of T, then the tree Tc is detected on round c, by

every node colored c. Suppose now that, for every c′ < c, the fact that a node u

colored c′ becomes active at round c′ means that u has detected Tc′ . Let c1, . . . , cr

42 Subgraph detection

be children of c in Tc. A node u colored c becomes active at round c if and only,

for every i, 1 ≤ i ≤ r, it holds that u has an active neighbor colored ci. From the

construction of the labels of T, and from the induction hypothesis, this implies

that u becomes active at round c if and only if u has detected Tc. We conclude

that a node colored k becomes active at round k if and only if T is detected in G,

as T = Tk.

Now, if G contains T as a subgraph, then the probability that G is well colored is

at least (1/k)k. Therefore, we run O(kk) independent iterations of Algorithm 1,

which yields that, with probability at least 2/3, G is well colored for at least one

iteration.

Deterministic algorithm

In this section, we establish our main result:

Theorem 3.5. For every tree T of constant size, there exists an algorithm performing

in O(1) rounds in the CONGEST model for detecting whether the given input network

contains T as a subgraph.

Proof. Let k be the number of nodes in tree T. The nodes of T are labeled arbi-

trarily by k distinct integers in [1, k]. We arbitrarily choose a vertex r ∈ [1, k] of

T, and view T as rooted in r. For any vertex ` ∈ V(T), let T` be the subtree of

T rooted in `. We say that T` is a shape of T. Our algorithm deciding T-freeness

proceeds in depth(Tr) + 1 rounds. At round t, every node u of G constructs, for

each shape T` of depth at most t, a set of subtrees of G all rooted at u, denoted

by SOSu(T`), such that each subtree in SOSu(T`) is isomorphic to the shape T`.

The isomorphism is considered in the sense of rooted trees, i.e., it maps u to `.

If we were in the LOCAL model, we could afford to construct the set of all such

subtrees of G. However, we cannot do that in the CONGEST model because

there are too many such subtrees. Therefore, the algorithm acts in a way which

guarantees that:

1. the set SOSu(T`) is of constant size, for every node u of G, and every node

` of T;

Subgraph detection 43

2. for every set C ⊆ V of size at most k − |V(T`)|, if there is some subtree

W of G rooted at u that is isomorphic to T`, and that is not intersecting

C, then SOSu(Tl) contains at least one such subtree W ′ not intersecting C.

(Note that W ′ might be different from W).

The intuition for the second condition is the following. Assume that there exists

some subtree W of G rooted at u, corresponding to some shape T`, which can

be extended into a subtree isomorphic to T by adding the vertices of a set C.

The algorithm may well not keep the subtree W in SOSu(Tl). However, we

systematically keep at least one subtree W ′ of G, also rooted at u and isomorphic

to T`, that is also extendable to T by adding the vertices of C. Therefore the

sets SOSu(T`), over all shapes T` of depth at most t, are sufficient to ensure

that the algorithm can detect a copy of T in G, if it exists. Our approach is

described in Algorithm 2. (Observe that, in this algorithm, if we omit Lines 17

to 19, which prune the set SOSu(T`), we obtain a simple algorithm detecting T in

the LOCAL model, where no bandwidth restriction is imposed). Implementing

the pruning of the sets SOSu(T`) for keeping them compact, we make use of

the following combinatorial lemma, which has been rediscovered several times,

under various forms (see, e.g., [72]).

Lemma 3.6 (Erdős, Hajnal, Moon [31]). Let V be a set of size n, and consider two

integer parameters p and q. For any set F ⊆ P(V) of subsets of size at most p of V,

there exists a compact (p, q)-representation of F, i.e., a subset F̂ of F satisfying:

1. For each set C ⊆ V of size at most q, if there is a set L ∈ F such that L∩ C = ∅,

then there also exists L̂ ∈ F̂ such that L̂ ∩ C = ∅;

2. The cardinality of F̂ is at most (p+q
p), for any n ≥ p + q .

By Lemma 3.6, the sets SOSu(T`) can be reduced to constant size (i.e., indepen-

dent of n), for every shape T` and every node u of G. Moreover, the number

of shapes is at most k, and, for each shape T`, each element of SOSu(T`) can be

encoded on k log n bits. Therefore each vertex communicates only O(log n) bits

per round along each of its incident edges. So, the algorithm does perform in

O(1) rounds in the CONGEST model1.
1We may assume that, for compacting a set SOSu(T`) in Lines 17-19, every node u applies

Lemma 3.6 by brute force (e.g., by testing all candidates F̂). In [72], an algorithmic version of
Lemma 3.6 is proposed, producing a set F̂ of size at most ∑

q
i=1 pi in time O((p + q)! · n3), i.e., in

time poly(n) for fixed p and q.

44 Subgraph detection

Algorithm 2 Tree-detection, for a given tree T. Algorithm executed by node u.

1: for each leaf ` of T do
2: let SOSu(T`) be the unique tree with single vertex u
3: exchange the sets SOS with all neighbors
4: end for
5: for t = 1 to depth(T) do
6: for each node ` of T with depth(T`) = t do
7: SOSu(T`)← ∅
8: let j1, . . . , js be the children of ` in T
9: for every s-uple (v1, . . . , vs) of nodes in N(u) do

10: for every (W1, . . . , Ws) ∈ SOSv1(Tj1)× · · · × SOSvs(Tjs) do
11: if {u} and W1, . . . , Ws are pairwise disjoint then
12: let W be the tree with root u, and subtrees W1, . . . , Ws
13: add W to SOSu(T`) . each Wi is glued to u by its root
14: end if
15: end for
16: end for
17: let F = {V(W) |W ∈ SOSu(Tl)} . collection of vertex sets for trees in

SOSu(Tl)
18: construct a (|V(T`)|, k− |V(T`)|)-compact representation F̂ ⊆ F . cf.

Lemma 3.6
19: remove from SOSu(T`) all trees W with vertex set not in F̂
20: exchange SOSu(T`) with all neighbors
21: end for
22: end for
23: if SOSu(Tr) = ∅ then . r denotes the root of T
24: accept
25: else
26: reject
27: end if

Proof of correctness. First, observe that if SOSu(T`) contains a graph W, then

W is indeed a tree rooted at u, and isomorphic to T`. This is indeed the case at

round t = 0, and we can proceed by induction on t. Let T` be a shape of depth

`. Each graph W added to SOSu(T`) is obtained by gluing vertex-disjoint trees

at the root u. These latter trees are isomorphic to the shapes Tj1 , . . . , Tjs , where

j1, . . . , js are the children of node j in T. Therefore W is isomorphic to T`. In

particular, if the algorithm rejects at some node u, it means that there exists a

subtree of G isomorphic to T.

We now show that if G contains a subgraph W isomorphic to T, then the al-

gorithm rejects in at least one node. For this purpose, we prove a stronger

statement:

Subgraph detection 45

Lemma 3.7. Let u be a node of G, T` be a shape of T, and C be a subset of vertices of G,

with |C| ≤ k− |V(Tu)|. Let us assume that there exists a subgraph Wu of G, satisfying

the following two conditions: (1) Wu is isomorphic to T`, and the isomorphism maps u

on `, and (2) Wu does not contain any vertex of C. Then SOSu(T`) contains a tree W ′u
satisfying these two conditions.

We prove the lemma by induction on the depth of T`. If depth(T`) = 0 then `

is a leaf of T`, and SOSu(T`) just contains the tree formed by the unique vertex

u. Il particular, it satisfies the claim. Assume now that the claim is true for any

node of T whose subtree has depth at most t− 1, and let ` be a node of depth

t. Let j1, . . . , js be the children of ` in T. For every i, 1 ≤ i ≤ s, let vi be the

vertex of Wu mapped on ji. By induction hypothesis, SOSv1(Tj1) contains some

tree W ′v1
isomorphic to Tj1 and avoiding the nodes in C ∪ {u}, as well as all

the nodes of Wv2 , . . . Wvs . Using the same arguments, we proceed by increasing

values of i = 2, . . . , s, and we choose a tree W ′vi
∈ SOSvi(Tji) isomorphic to Tji

that avoids C ∪ {u}, as well as all the nodes in W ′v1
, . . . , W ′vi−1

and the nodes

of Wvi+1 , . . . , Wvs . Now, observe that the tree W ′′ obtained from gluing u to

W ′v1
, . . . , W ′vs has been added to SOSu(T`) before compacting this set, by Line 12

of Algorithm 2. Since W ′′ does not intersect C, we get that, by compacting the

set SOSu(T`) using Lemma 3.6, the algorithm keeps a representative subtree W ′

of G that is isomorphic to Tl and not intersecting C. This completes the proof of

the lemma. �

To complete the proof of Theorem 3.5, let us assume there exists a subtree W of

G isomorphic to T, and let u be the vertex that is mapped to the root r of T by

this isomorphism. By Lemma 3.7, SOSu(Tr) 6= ∅, and thus the algorithm rejects

at node u.

3.5 Distributed Property Testing

In this section, we show how to construct a distributed tester for H-freeness in

the sparse model, based on Algorithm 2. This tester is able to test the presence

of every graph pattern H composed of an edge e and a tree T connected in an

arbitrary manner, by distinguishing graphs that include H from graphs that are

ε-far from being H-free.

46 Subgraph detection

Specifically, we consider the setH of all graph patterns H with node-set V(H) =

{x, y, z1, . . . , zk} for k ≥ 1, and edge-set E(H) = { f } ∪ E(T) ∪ E , where f =

{x, y}, T is a tree with node set {z1, . . . , zk}, and E is some non-empty set of

edges with one end-point equal to x or y, and the other end-point zi for i ∈
{1, . . . , k}. Hence, a graph H ∈ H can be described by a triple (f , T, E) where E
is a set of edges connecting a node in T with a node in f .

We now establish our second main result, i.e., Theorem 3.2, stated formally

below as follows:

Theorem 3.8. For every graph pattern H ∈ H, i.e., composed of an edge and a tree of

constant size connected in an arbitrary manner, there exists a randomized 1-sided error

distributed property testing algorithm for H-freeness performing in O(1/ε) rounds in

the CONGEST model.

Proof. Let H = (f , T, E), with f = {x, y}. Let us assume that there are ν copies

of H in G, and let us call these copies H1 = (f1, T1, E1), . . . , Hν = (fν, Tν, Eν)).

Let E = { f1, . . . , fν}. Our tester algorithm for H-freeness is composed by the

following two phases:

1. determine a candidate edge e susceptible to belong to E;

2. checking the existence of a tree T connected to e in the desired way.

In order to find the candidate edge, we exploit the following lemma:

Lemma 3.9 ([40]). Let H be any graph. Let G be an m-edge graph that is ε-far from

being H-free. Then G contains at least εm/|E(H)| edge-disjoint copies of H.

Hence, if the actual m-edge graph G is ε-far from being H-free, we have |E| ≥
εm/|E(H)|. Thus, by randomly choosing an edge e and applying Lemma 3.9,

e ∈ E with probability at least ε/|E(H)|.

The first phase can be computed in the following way. First, every edge is as-

signed to the endpoint having the smallest identifier. Then, every node picks

a random integer r(e) ∈ [1, m2] for each edge e assigned to it. The candidate

edge of Phase 1 is the edge emin with minimum rank, and indeed Pr[emin ∈ E] ≥
ε/|E(H)|.

Subgraph detection 47

It might be the case that emin is not unique though. However, the following

Lemma holds.

Lemma 3.10. Pr[emin is unique] ≥ 1/e2, where e denotes here the basis of the natural

logarithm.

Proof. The probability that there are no collisions while choosing for each edge

a random number from [1, m2] is

m2 − 1
m2 × . . .× m2 −m

m2 ≥
(

m2 −m
m2

)m

=

(
1− 1

m

)m
≥
(

e
−2
m

)m
=

1
e2

where the last inequality holds whenever m ≥ 2.

Also, every node picks, for every edge e = {v1, v2} assigned to it, a random

bit b. Assume, w.l.o.g., that ID(v1) < ID(v2). If b = 0, then the algorithm will

start Phase 2 for testing the presence of H with (x, y) = (v1, v2), and if b = 1,

then the algorithm will start Phase 2 for testing the presence of H with (x, y) =

(v2, v1). We have Pr[emin is considered in the right order] ≥ 1/2. It follows that

the probability emin is unique, considered in the right order, and part of E is at

least ε
2|E(H)|e2 .

Using a deterministic search based on Algorithm 2, H will be found with prob-

ability at least ε
2|E(H)|e2 . To boost the probability of detecting H in a graph that

is ε-far from being H-free, we repeat the search 2e2|E(H)| ln 3/ε times. In this

way, the probability that H is detected in at least one search is at least 2/3 as

desired.

During the second phase, the ideal scenario would be that all the nodes of G

search for H = (f , T, E) by considering only the edge emin as candidate for f , to

avoid congestion. Obviously, making all nodes aware of emin would require di-

ameter time. However, there is no needs to do so. Indeed, the tree-detection al-

gorithm used in the proof of Theorem 3.5 runs in depth(T) rounds. Hence, since

only the nodes at distance at most depth(T) + 1 from the endpoints of emin are

able to detect T, it is enough to broadcast emin at distance up to 2 (depth(T) + 1)

48 Subgraph detection

rounds. This guarantees that all nodes participating to the execution of the algo-

rithm for emin will see the same messages, and will perform the same operations

that they would perform by executing the algorithm for emin on the full graph.

So, every node broadcasts its candidate edges with the minimum rank, at dis-

tance 2 (depth(T) + 1). Two contending broadcasts, for two candidate edges e

and e′ for f , resolve contention by discarding the broadcast corresponding to the

edge e or e′ with largest rank. (If e and e′ have the same rank, then both broad-

cast are discarded). After this is done, every node is assigned to one specific

candidate edge, and starts searching for T. Similarly to the broadcast phase,

two contending searches, for two candidate edges e and e′, resolve contention

by aborting the search corresponding to the edge e or e′ with largest rank. From

now on, one can assume that a single search in running, for the candidate edge

emin.

It remains to show how to adapt Algorithm 2 for checking the presence of a tree

T connected to a fixed edge e = {x, y} ∈ E(G) as specified in E . Let us consider

Instruction 6 of Algorithm 2, that is: “for each node ` of T with depth(T`) = t

do”. At each step of this for-loop, node u tries to construct a tree W that is

isomorphic to the subtree of T rooted at `. In order for u to add W to SOSu(T`),

we add the condition that:

• if {`, x} ∈ E(H) then {u, x} ∈ E(G), and

• if {`, y} ∈ E(H) then {u, y} ∈ E(G).

Note that this condition can be checked by every node u. If this condition is not

satisfied, then u sets SOSu(T`) = ∅.

This modification enables us to test H-freeness. Indeed, if the actual graph G is

H-free, then, since at each step of the modified algorithm, the set SOSu(T`) is a

subset of the set SOSu(T`) generated by the original algorithm, the acceptance

of the modified algorithm is guaranteed from the correctness of the original

algorithm.

Conversely, let us show that, in a graph G that is ε far of being H-free, the

algorithm rejects G as desired. In the first phase of the algorithm, it holds that

emin ∈ E happens in at least one search whenever G is ε-far from being H-

free, with probability at least 2/3. Following the same reasoning of the proof of

Subgraph detection 49

Lemma 3.7, since the images of the isomorphism satisfy the condition of being

linked to nodes {x, y} in the desired way, the node of G that is mapped to the

root of T correctly detects T, and rejects, as desired.

3.6 Conclusions

In this work, we have proposed a generic construction for designing determin-

istic distributed algorithms detecting the presence of any given tree T as a sub-

graph of the input network, performing in a constant number of rounds in the

CONGEST model. Therefore, there is a clear dichotomy between cycles and trees,

as far as efficiently solving H-freeness is concerned: while every cycle of at least

four nodes requires at least a polynomial number of rounds to be detected, ev-

ery tree can be detected in a constant number of rounds. It is not clear whether

one can provide a simple characterization of the graph patterns H for which

H-freeness can be decided in O(1) rounds in the CONGEST model. An intrigu-

ing question is to determine the round-complexity of deciding Kk-freeness in

the CONGEST model for k ≥ 3, and in particular to determine the exact round-

complexity of deciding C3-freeness.

Our construction also provides randomized algorithms for testing H-freeness

(i.e., for distinguishing H-free graphs from graphs that are far from being H-

free), for every graph pattern H that can be decomposed into an edge and a tree,

with arbitrary connections between them, also running in O(1) rounds in the

CONGEST model. This generalizes the results in [17, 40], where algorithms for

testing H-freeness for every H of at most 4 nodes were provided. Interestingly,

K5 is the smallest graph pattern H for which it is not known whether testing H-

freeness can be done in O(1) rounds, and this is also the smallest graph pattern

that cannot be decomposed into a tree plus an edge. We do not know whether

this is just coincidental or not.

Chapter 4

Tradeoffs Between Bandwidth and

Time

In this chapter we address some questions related to time complexity in the

CONGEST model. More precisely, since often upper bounds are given only for

the case where the bandwidth is constrained to be O(log n), we analyze how

the time complexity of existing algorithms can scale when more bandwidth is

allowed. We show that the complexity of different problems can scale in differ-

ent ways, and that in some limit cases, up to some point, more bandwidth does

not help at all. This chapter is based on currently unpublished results present

in [76].

4.1 Introduction

The links of networks typically have limited bandwidth. The CONGEST model

for distributed network computing captures this constraint. In this model, an

algorithm proceeds in synchronous rounds. At each round, every node can

send B bits to each of its neighbors in the network (these B bits do not need

to be the same for all neighbors). A typical value for B is O(log n) in n-node

networks. This value is sufficient to transmit an integer in a polynomial range,

like the identifier of a node, or the weight of an edge.

51

52 Tradeoffs Between Bandwidth and Time

One celebrated result in this context is a Minimum-weight Spanning Tree (MST)

construction algorithm that performs in O(D +
√

n log∗ n) rounds in diameter-

D n-node networks [62]. This complexity is optimal for B = O(log n) [77].

On the other hand, all (computable) tasks can be solved in O(D) rounds in

diameter-D networks whenever there is no limitation on the bandwidth, by

gathering all data at one node, computing the solution at that node, and broad-

casting that solution to all nodes.

The aim of this work is to investigate tradeoffs between the round complexity

for solving a task, and the bandwidth of the links. So far, results are known only

for B = O(log n) in the classical CONGEST model, and B = +∞ in the so-called

LOCAL model. A specific case that deserves particular interest is to determine,

given a task, the minimum value for B such that the task is solvable in O(D)

rounds in diameter-D networks with links of bandwidth B. For instance, in the

case of the MST construction task, what is the minimum value of B such that

MST can be constructed in O(D) rounds? It is known that B = O(log n) is not

sufficient, as Ω(D +
√

n) rounds is a lower bound on the number of rounds for

such a value of B [77].

4.2 Our Goal

In this work, our objective is twofold. First, we are aiming at establishing trade-

offs between the size of the messages B and the number of rounds, by obtaining

algorithms for the CONGESTB model, having round complexities that are para-

metric on B. Our second objective is to better understand the role of B in the

CONGESTB model, and try to figure out if B always has some impact on the

round complexity.

We start by analyzing the round complexity of various problems, namely MST,

SSSP, and APSP. The upper bounds for these problems have been studied only

in the case where the size of the messages is B = O(log n), while lower bounds

have been typically given as a function of B. Thus, our goal is to better un-

derstand what is the time complexity of these problems on a wider spectrum

of bandwidths. In fact, we provide new time complexities that depend on the

bandwidth parameter B.

Tradeoffs Between Bandwidth and Time 53

Then, we try to understand if all problems can benefit from the presence of

more bandwidth. Consider two nodes that are at a distance that is equal to the

diameter of the graph. Trivially, if they want to share just a bit, they need to wait

a time proportional to the diameter of the graph, and even by allowing more

bandwidth they can not solve the problem faster. We want to better understand

this phenomenon and address the following question: are there problems that

can not benefit from the presence of more bandwidth, possibly unrelated to

trivial bounds related to distances?

4.3 Results

We notice that different problems exhibit a different behavior when analyzing

how their time complexity scale with the allowed bandwidth.

For global problems, a lower bound of Ω(D) holds, where D is the diameter of

the network. Thus, a problem can be typically solved faster using more band-

width, up to some point, where other parameters, like D, start to dominate the

time complexity. The goal is to measure how much the speed of an algorithm

can scale before reaching this point. In order to do so, we consider TP(X), de-

fined to be the exact round complexity of a problem P using messages of size

B = O(X log n), and we define the speedup as SP(X) = limn→+∞
TP(1)
TP(X)

. In

this way, we treat all the other parameters as constants and we measure the

speedup as a function of n. For example, for the complexity Θ(D +
√ n
X), we

obtain SP(X) =
√
X , suggesting that the speed of the algorithm depends on

the square root of the bandwidth. Notice that, when D is not constant, this defi-

nition still makes sense: we have the same speedup, but we stop gaining speed

when
√ n
X becomes as small as D.

Depending on SP, we define three classes of problems and, for each of these

classes, we provide examples of problems belonging to them.

• bandwidth efficient: the class of all problems P such that SP(X) = Θ(X),

i.e., problems having a round complexity that fully scales with the band-

width.

54 Tradeoffs Between Bandwidth and Time

• bandwidth sensitive: this class contains all problems P such that SP(X) =

o(X) and SP(X) = ω(1), i.e., those problems that have a round complex-

ity that scales with the bandwidth, but not linearly.

• bandwidth insensitive: the class of all problems P such that SP(X) = Θ(1),

i.e., whose complexity does not depend on the size of the messages.

First, we investigate the round complexity of the All Pairs Shortest Paths (APSP)

problem in unweighted graphs, in the CONGESTB model. We know that for this

problem there is a lower bound of Ω(D + n
B) rounds [43] and an algorithm

performing in O(n) rounds [55]. We show that the APSP problem is bandwidth

efficient, i.e., that SAPSP(X) = Θ(X), by modifying the existing algorithm to

run in time O(D +
n log n

B) = O(D + n
X).

We then investigate the round complexity of two well studied problems, namely

Minimum Spanning Tree (MST) and Single Source Shortest Path (SSSP). For

both these problems there is a lower bound of Ω(D +
√ n

B) rounds [22]. On the

other hand, these two problems have been studied only when B = O(log n). In

this case, there exists an algorithm that solves the MST construction problem in

O(D +
√

n log∗ n) rounds [62], that is a round complexity that nearly matches

the lower bound. For the SSSP problem, no sublinear algorithm that matches

the lower bound and finds an exact solution is known. Conversely, we can find

a (1 + ε)-approximation of the solution in Õ(ε−O(1)(
√

n + D)) rounds, that is

near-optimal. We show that the round complexity of both these problems scales

with B, that is, if it is possible to send messages of size B at each round,

• there exists an algorithm that constructs a MST in Õ(D +
√ n

B) rounds;

• there esists an algorithm that finds a (1 + ε)-approximation of the SSSP

problem in Õ(ε−O(1)(
√ n

B + D)) rounds.

Notice that these two round complexities match their respective lower bounds,

up to polylogarithmic factors, for any value of B. Also, for both these problems,

S(X) = Θ(
√
X), i.e., these two problems are bandwidth sensitive.

We then show that there are problems for which, by increasing the bandwidth

of the links, the round complexity does not change. In order to reduce the round

complexity, one needs to increase the size of the messages exponentially. More

Tradeoffs Between Bandwidth and Time 55

specifically, we show that there is a problem, Distancek, solvable in O(log n)

rounds using messages of size B = O(log n), but such that if we want to solve

the problem in less than log n
2 rounds, then we need to use messages of size

at least Ω(n
log3 n

). In other words, Distancek is a bandwidth insensitive problem

for bandwidths in the range from Ω(log n) to O(n
log3 n

) bits, since in this range

S(X) = Θ(1).

4.4 All Pairs Shortest Paths

In this section we show how to modify the APSP algorithm of [55, 81] and re-

duce the round complexity when the bandwidth increases, solving the problem

in O(D +
n log n

B) rounds. Notice that a more elaborated proof allows to prove a

bound of O(D + n
B) [56].

Recall that, in the APSP problem, each node needs to find its distance from all

the other nodes. In [55, 81] it is shown how to deterministically find an exact

solution of the APSP problem in O(D + n) rounds in unweighted graphs. The

procedure is the following:

1. construct a BFS tree;

2. perform a DFS visit on the tree;

3. at each step of the DFS visit, wait 1 round and then start a BFS from the

current node (if it is visited for the first time).

All nodes will know their distances from all the other nodes by knowing their

distance from the root of each BFS tree. In [55] it is shown that, by waiting

one round before starting each visit, the breadth-first searches can be executed

concurrently without congestion. In other words, at each round, at most one

message passes on a fixed edge. The complexity comes by the fact that the DFS

visit requires O(n) rounds and that O(D) is the time required to complete a

BFS.

We show how to modify this procedure in order to solve the problem in O(D +
n log n

B) rounds.

56 Tradeoffs Between Bandwidth and Time

Theorem 4.1. There exists an algorithm for the CONGESTB model that solves the All

Pairs Shortest Path problem in O(D +
n log n

B) rounds.

Proof. Let si, 1 ≤ i ≤ n, be the i-th node visited (for the first time) by a DFS

performed on the BFS tree. Let ti, 0 ≤ ti < 2n, be the time at which node si is

visited for the first time by the DFS. Consider the sequence T = (t1, . . . , tn). We

split T in d B
log ne subsequences T1, . . . , Td B

log n e
of length at most d2 n log n

B e each,

where Tj contains the values ti such that d 2 n log n
B e(j− 1) ≤ ti < d 2 n log n

B ej. No-

tice that, if each node si starts its BFS at time 2 ti, there is no congestion between

different breadth-first searches, for the same arguments showed in [55]. Now,

in order to speed up the computation, we can visit all the sequences concur-

rently, by starting the BFS of node si with ti ∈ Tj at time 2(ti − d 2 n log n
B e(j− 1)).

In other words, we are splitting the DFS visit in at most d B
log ne parts, each of

them of length at most d2 n log n
B e. By doing this, there can be congestion for at

most d B
log ne breadth-first searches at the same time (one for each sequence), and

since the bandwidth is B, a constant number of rounds is enough to transmit on

the same edge d B
log ne messages of size O(log n) belonging to different breadth-

first searches. Since each sequence is of length at most d2 n log n
B e, the total time

required to solve the problem is O(D +
n log n

B).

What remains to show is how each node si can compute ti in O(D) rounds.

Notice that, by performing a convergecast, all nodes of the BFS tree can learn

the size of the subtree rooted at each of its children. Now, starting from the root

s1 and setting t1 = 0, each node si can assign an arbitrary order to its children,

and send, to each child sj, ti and the sum σ of the number of nodes present in

the subtrees rooted on the children before sj. Then each child sj can compute

tj = 2σ + ti + 1 and repeat the same procedure. In total, O(D) rounds are

required.

4.5 Minimum Spanning Tree

In this section we show how to modify the MST construction algorithm of [62]

and reduce the round complexity when the bandwidth increases, by proving

the following theorem.

Tradeoffs Between Bandwidth and Time 57

Theorem 4.2. There exists an algorithm for the CONGESTB model that constructs a

Minimum Spanning Tree in Õ(D +
√ n

B) rounds.

Recall that, for the MST construction task, every node is given as input the

weight w(e) of each of its incident edges e. These weights are supposed to

be of values polynomial in the size n of the network G = (V, E, w), and thus

each weight can be stored on O(log n) bits. The output of every node is a set

of incident edges, such that the collection of all outputs forms an MST of the

network. A Minimum Spanning Tree is a subset of edges T ⊆ E such that (V, T)

is connected and ∑e∈T w(e) is minimum. At the end of the computation each

node must know which of its adjacent edges belong to the Minimum Spanning

Tree.

The algorithm of [62] is divided in two phases: FAST-DOM-G and PIPELINE.

The first part, FAST-DOM-G, computes a set of sub-MST by applying a modi-

fied version of the algorithm of Gallager, Humblet and Spira (GHS) [44]. The

second part, PIPELINE, finds the remaining edges by performing a converge-

cast, where nodes send edges in non-decreasing order of weight by ignoring

edges that close some cycle. FAST-DOM-G runs in O(k log∗ n) rounds and cre-

ates n
k+1 fragments, where k is a parameter to be fixed later, while PIPELINE

runs in O(D + n
k) rounds. By setting k =

√
n, they obtain a complexity of

O(D +
√

n log∗ n) rounds.

We show that PIPELINE can be performed faster if more bandwidth is allowed.

More specifically, we show that it can be performed in O(D +
n log n

k·B) rounds.

By choosing k =
√

n log n
B , we obtain Theorem 4.2.

Lemma 4.3. PIPELINE can be completed in O(D +
n log n

k·B) rounds, where B is the size

of the messages.

The rest of the section is used to prove Lemma 4.3, that is, we now show how

to adapt the PIPELINE procedure in such a way that if each node sends O(B
log n)

edges per round, it still runs in a fully pipelined way. This implies that it is

possible to send O(n
k+1) edges in O(D + n

k+1 / B
log n) = O(D +

n log n
(k+1)B) = O(D +

k) rounds.

The existing PIPELINE algorithm, modified to send B
log n edges per round, does

the following:

58 Tradeoffs Between Bandwidth and Time

1. construct a BFS-tree of G;

2. each node knows, from the first phase (FAST-DOM-G), the edges that con-

nect it to other fragments;

3. each node keeps a set of edges (in non-decreasing order of weight) not

already sent to its parent;

4. leaves start at round 0, intermediate nodes start when they have received

at least a message from all their neighbors;

5. at each step each node sends the B
log n lightest edges that does not close

a cycle with the edges already sent (or the ones that it is sending) and

repeats this step until there are no valid edges (since B
log n could be non-

integral, we can use two rounds to complete this task);

6. at the end the root chooses the n
k+1 lightest received edges and broadcasts

them.

We adapt the proof in [62] to show that the PIPELINE procedure described above

correctly completes within the required time. We first show the main part of the

proof of [62] and then our adaptation.

In [62] it is shown inductively that, at each step, there is at least one edge that

can be upcasted. Let a node be active if it has sent an edge in the previous step.

Assume that there is a node v that is active from m steps and it has at least one

active child u. Notice that its active children are active from at least m + 1 steps.

Let U be the set of edges already sent from node v to its parent in the previous

steps. We know that this set forms a forest of trees, that we call U1, ..., Ul. Let

xi = |Ui|. Notice that ∑ xi = m, since node v sent an edge in all the previous

m rounds. We also know that |V(Ui)| = xi + 1, since Ui is a tree. Let C be the

set of edges that v already received from its child u. We know that |C| ≥ m + 1,

since each child is active from at least one step before its parent.

Now, suppose for the sake of contradiction that all the edges in C are not candi-

dates that can be sent. It means that each edge, either it has already been sent, or

that it closes a cycle. In both cases, the endpoints of each edge are part of some

edge of U (the edges already sent). Since U forms a forest this also implies that

there are no edges that connect two different trees Ui, Uj of U. It means that

C can be partitioned depending on the trees to which the endpoints of each

Tradeoffs Between Bandwidth and Time 59

edge belong to. We can say that for each i, each edge in Ci has its endpoints in

V(Ci). And since C is a forest, we obtain that |Ci| ≤ |V(Ui)− 1|. It follows that

|Ci| ≤ |V(Ui)− 1| = xi, C ≤ ∑ xi = m ≤ |C| − 1 that is a contradiction. This

implies that C contains at least one candidate.

The above proof can be adapted for our purposes in the following way. Since

at each step a child sends B
log n edges, we know that ∑ xi = |U| = mB

log n . We

know also that children sent edges for at least m + 1 steps, thus |C| ≥ (m+1)B
log n .

Again, for the sake of contradiction, assume that the number of candidate edges

is less than B
log n . This means that at least |C| − B

log n + 1 edges have both their

endpoints in U. In this case there are at least |C| − B
log n + 1 edges that can be

partitioned in sets C1, . . . , Cl such that the endpoints of edges in Ci are only in

V(Ui). Hence, we obtain that ∑ |Ci| ≤ ∑(|V(Ui)| − 1) = ∑ xi. Since ∑ |Ci|
is at least |C| − B

log n + 1, we have that |C| − B
log n + 1 ≤ ∑ xi, implying that

|C| ≤ ∑ xi +
B

log n − 1. Thus, we obtain (m+1)B
log n ≤ |C| ≤ ∑ xi +

B
log n − 1 = mB

log n +

B
log n − 1 = (m+1)B

log n − 1, which is a contradiction. This proves that C contains at

least B
log n candidates.

Figure 4.1 depicts how the complexity of MST scales with the available band-

width.

log n

√
n

log n
√

n n

R
ou

nd
s

Message Size

√
n log n

B

FIGURE 4.1: Round complexity of MST as a function of B

4.6 Single Source Shortest Path

In this section we show how to modify the SSSP algorithm of [13] and reduce

the round complexity when the bandwidth increases. Recall that in the SSSP

60 Tradeoffs Between Bandwidth and Time

problem, given a node v, all nodes of the graph have to find their distance from

v. In [13] it is shown how to deterministically find a (1 + ε) approximate so-

lution of the SSSP problem using Õ(ε−O(1)(
√

n + D)) rounds, where D is the

(hop) diameter of the network. First, it exploits a Theorem of [54], that states

the following:

Theorem 4.4. ([54]) Given any weighted undirected network G = (V, E, w) and a

source node s ∈ V, there is a Õ(
√

n)-round deterministic distributed algorithm in the

broadcast CONGEST model that computes an overlay network G′ = (V′, E′, w′) with

edge weights w′ : E′ → {1, . . . , poly(n)} and some additional information for every

node with the following properties:

• |V′| = Õ(ε−1√n) and s ∈ V′.

• For ε′ := ε/7, each node v ∈ V can infer a (1+ ε)-approximation of its distance

to s from (1 + ε′)-approximations of the distances between s and each t ∈ V′ .

By applying Theorem 4.4, the SSSP problem is reduced to a graph of roughly
√

n nodes (skeleton nodes). Then, in [13] the authors provide an algorithm that

solves the SSSP problem in the Broadcast Congested Clique and that runs in

ε−9polylog(n) rounds. They also show how to emulate this algorithm in the

CONGEST model, with a slowdown proportional to D and to the number of

nodes of the clique. Since the problem is reduced to an instance with
√

n nodes,

the algorithm can be emulated in ε−9polylog(n) ·O(D +
√

n) rounds. At this

point the skeleton nodes can broadcast their distance from s to all the nodes of

the original graph in O(D +
√

n) rounds, and all the nodes can compute their

approximate distance from s (Theorem 4.4).

As stated in [54], Theorem 4.4 is a deterministic version of a more general theo-

rem stated in [73], where |V′| can be of size Õ(α) and the running time of their

algorithm is Õ(α + n
α + D) and succeeds with high probability. The round com-

plexity is proved by providing an algorithm that solves the bounded-hop multi-

source shortest path problem in Õ(|V′|+ h + D) rounds, where the sources are

nodes in V′ and the number of hops h is n log n
α .

We now show that the aforementioned algorithm can complete in Õ(α
B + n

α + D)

rounds, and that a round of communication of the broadcast congested clique

with |V′| nodes can be emulated in Õ(|V
′|

B + D) rounds in the CONGESTB model,

by proving the following lemmas.

Tradeoffs Between Bandwidth and Time 61

Lemma 4.5. A round of communication of the Broadcast Congested Clique can be

emulated in the CONGESTB model in Õ(|V
′|

B + D) rounds.

Proof. As in [13], we can solve the problem by using pipelining on a BFS tree.

As in the MST case (Lemma 4.3), the speed of the pipelining linearly depends

on 1
B .

Lemma 4.6. There is a distributed algorithm that runs in Õ(|V
′|

B + h + D) rounds in

the CONGESTB model that solves the bounded-hop multi-source shortest path problem.

Proof. The idea of the algorithm in [73] is to execute many bounded-hop single-

source shortest path algorithms in parallel, one for each source node, and to

randomly delay the starting time of each execution in order to avoid conges-

tion. In [73] it is shown that the execution of a single bounded-hop single-source

shortest path algorithm requires O(h + D) rounds using messages of logarith-

mic size, and by choosing a random delay from the interval of numbers from

0 to |V′| log n, |V′| executions can be performed in parallel without much con-

gestion, obtaining a round complexity of Õ(|V′| + h + D). We show that, by

increasing the bandwidth (thus allowing more congestion), it is possible to re-

duce the size of the interval from where the random delay is chosen.

Let k = |V′|. Let Mi,u be the set of messages sent by node u while executing

the bounded-hop single-source shortest path algorithm for source si. In [73]

(Lemma 3.7) it is shown that Mi,u ≤ c log n for some constant c. They then

show that, if the delay is randomly chosen from the integers from 0 to k log n,

then the probability that there exists a time t, a node u and a setM ⊆ ⋃
iMi,u

such that |M| ≥ log n and all messages in M are broadcasted by u at time

t = O(k + h + D), is O(1
n2). We extend this result showing in the remaining

part of the section that, if the delay is randomly chosen from the integers from 0

to k log2 n
B , then the probability thatM≥ B is also O(1

n2), that implies the lemma.

Fix any node u, time t and setM as above. Since u at each round sends at most

one message for each si, we can assume that |M∩Mi,u| ≤ 1. This implies that

|M| ≤ k. As in the original proof, we can bound the number of possible setsM
of size m by (k

m)(c log n)m. This holds since each setM can be constructed by

picking m different setsMi,u and picking one message out of c log n messages

from eachMi,u. Then, the probability that all the messages of a set are sent at

the same round is at most (B
k log2 n

)|M|. Thus, for fixed u and t, the probability

62 Tradeoffs Between Bandwidth and Time

that there existsM such that |M| ≥ B and all messages inM are sent by u at

time t, is at most
k

∑
m=B

(
k
m

)
(c log n)m

(
B

k log2 n

)m

≤

k

∑
m=B

(
ke
m

)m
(c log n)m

(
B

k log2 n

)m

=

k

∑
m=B

(
ecB

m log n

)m
≤

k

∑
m=B

(
ecB

B log n

)B
=

k

∑
m=B

(
ec

log n

)B
≤ k

(
ec

log n

)B

Since B ≥ log n, for large n the above formula is at most 1
n4 . Then the lemma

follows by summing this probability over all nodes u and time steps t.

Now we have all the ingredients to prove the following theorem.

Theorem 4.7. There is a distributed algorithm that runs in Õ(ε−O(1)(
√ n

B + D))

rounds in the CONGESTB model that solves the (1 + ε) approximate SSSP problem.

Proof. Let |V′| be Õ(ε−1
√

nB). By Theorem 4.4 and Lemma 4.6, we can reduce

the problem to a SSSP instance on |V′| nodes in Õ(ε−1√ n
B + D) rounds. We can

then simulate, using Lemma 4.5, the Broadcast Congested Clique algorithm of

[13] in Õ(ε−O(1)(
√ n

B + D)) rounds to solve the original problem.

4.7 Distancek

In this section we show a problem, called Distancek, whose round complexity

does not depend on the size B of the messages, for a large interval of values of

B. Consider a graph G = (V, E) that is the underlying communication graph,

and consider a (possibly different) directed graph G′ = (V, E′). To each node

v ∈ V is provided as input the set of its neighbors that it has in G′ (its outgoing

edges). Notice that the neighbors that v has in G and in G′ could be different.

The problem Distancek consists in finding a node w ∈ V that is at distance k

from a fixed node u in G′. A node w is at distance k from u if there is a directed

path starting from u that ends at w and that path is the shortest one. Notice that

Tradeoffs Between Bandwidth and Time 63

both u and w are part of the input, that is, only a fixed node needs to find the

distance. An example of an input instance of Distancek is shown in Figure 4.2,

where, for example, a valid result for Distance2(1) is 7.

7
{3, 2, 6}

1
{4, 5}

5
{8}

3
{ }

8
{3, 6}

6
{ }

2
{6}

4
{7, 3}

(a)

1 4

5

8

3

6

7

2

(b)

FIGURE 4.2: (a) represents G, the communication graph where the algorithm
is executed and the input given to the nodes, while (b) is G′, the directed graph

given in input to the nodes.

Theorem 4.8. There are instances of Distancek that can be solved in O(k) rounds

using messages of size B = O(log n), that, if we want to solve in b k−1
2 c rounds, we

need to use messages of size B = Ω(n
k3).

In the following we will prove Theorem 4.8. Consider instances of Distancek

where the out-degree of G′ is at most 1. In this case, in the CONGEST model,

using messages of size O(log n) bits, this problem can be solved in O(k · D(G))

rounds, where D(G) is the diameter of the communication graph, using Algo-

rithm 3.

Algorithm 3 Distancek(u)

1: if my Id is u then
2: my distance is 0
3: else
4: my distance is +∞
5: end if
6: for i← 0, k− 1 do
7: if my distance is i then
8: broadcast in G the Id of my neighbor in G′

9: end if
10: if I receive a broadcast containing my Id ∧my distance is +∞ then
11: my distance is i + 1
12: end if
13: end for
14: if my distance is k then
15: broadcast my Id
16: end if

64 Tradeoffs Between Bandwidth and Time

The idea is the following: once a node knows that it is at distance i, it can per-

form a BFS on G in order to broadcast its outgoing edge, that it has in G′, to all

the other nodes. Since each broadcast requires O(D) rounds, in total O(k · D)

rounds are required. Notice that, if the diameter of G is constant, the complexity

becomes O(k).

We now show that, in order to solve the problem in b k−1
2 c rounds, we need

messages of size at least Ω(n
k3). Notice that, by choosing k = log n, we obtain

the following: there are instances of Distancek that can be solved in O(log n)

rounds using messages of size O(log n), while in order to solve the problem

in less than a constant fraction of log n rounds, messages of size Ω(n
log3 n

) are

needed, i.e., there is an exponential gap in the size of the messages.

In [75] the following problem, Pointerk, is defined. There are two players, Alice

and Bob, and to each of them is provided a list of n pointers, each pointing to

the list of the other player. Their task is to follow these pointers, starting from

some fixed pointer of Alice, and then find the k-th pointer. It is known that

the communication complexity of this problem is O(k log n) bits: it is enough

to send the i-th pointer at the i-th round, for a total of k rounds, where at each

round log n bits are sent. They show that, in order to solve this problem in

k − 1 rounds, even if Las Vegas algorithms are allowed, the communication

complexity of this problem becomes Ω(n
k2) bits. Notice that for k = log n there

is an exponential gap between the two complexities.

We can reduce an instance of the problem Pointerk on p pointers to an in-

stance of Distancek with p + 2 nodes in the following way. Construct a graph

G = (V, E) where the nodes V are partitioned in two groups L and R of equal

size, plus two special nodes l and r (see Figure 4.3). The nodes of each group

are connected to a single special node and there is an edge connecting the two

special nodes l and r. To each node of L is assigned a different ID from the

set {1, . . . , |L|} and to each node of R is assigned a different ID from the set

{|L| + 1, . . . , |L| + |R|}. We assign to node l the ID |V| − 1 and to node r the

ID |V|. The edges of G′ = (V, E′) are defined in the following way. If the i-th

pointer of Alice points to the j-th pointer of Bob, the node with ID i has an out-

going edge to the node with ID |L|+ j. On the other hand, if the i-th pointer of

Bob points to the j-th pointer of Alice, the node with ID |L|+ i has an outgoing

edge to the node with ID j. Also, nodes |V| − 1 and |V| have an edge between

themselves. An example of reduction is shown in Figure 4.3. Notice that Alice

Tradeoffs Between Bandwidth and Time 65

(a)

Alice Bob
2 5
4 4
5 3
1 1
3 2

1
{7}

2
{9}

3
{10}

4
{6}

5
{8}

11
{12}

12
{11}

6
{5}

7
{4}

8
{3}

9
{1}

10
{2}

(b)

FIGURE 4.3: (a) shows the Pointerk instance, while (b) shows its Distancek ver-
sion.

(resp. Bob) can construct the input of the nodes of L (resp. R) without com-

municating with Bob (resp. Alice). Assume that there is an algorithm for the

CONGESTB model that solves the problem in b k−1
2 c rounds. Alice and Bob can

simulate this algorithm in at most k− 1 rounds by exchanging the B bits that are

transmitted between the two special nodes at each round. Thus, a lower bound

for Pointerk holds for Distancek as well.

In the CONGESTB model, we are allowed to send B bits on each edge at each

round. If we want to solve Distancek in at most b k−1
2 c rounds, we need to trans-

fer Ω(n
k2) bits, thus Ω(n

Bk2) rounds are required. In other words, we need to

satisfy n
Bk2 ≤ b k−1

2 c, that gives B = Ω(n
k3).

Figure 4.4 depicts how the complexity of Distancek scales with the available

bandwidth.

1

√
log n

log n

log n n
log3 n

R
ou

nd
s

Message Size

min(k, n
B log2 n

)

FIGURE 4.4: Round complexity of of Distancek as a function of B

66 Tradeoffs Between Bandwidth and Time

4.8 Conclusions

We considered the problem of understanding how the bandwidth affects the

round complexity in the CONGEST model. Our results show that in some cases

the round complexity perfectly scales with the bandwidth, matching existing

lower bounds. On the other hand we showed that there are problems in which

we need to increase exponentially the size of the messages in order to speed

up the round complexity. These results suggest that it is important to analyze

algorithms in the CONGEST model by considering a wider spectrum of band-

widths. It would be interesting to study this tradeoff between bandwidth and

round complexity for other problems present in the literature.

Chapter 5

Clique Emulation

In this chapter we investigate tradeoffs between the number of edges of a graph

and its ability to allow an efficient all-to-all communication. We first provide

graphs that optimally satisfy this tradeoff, and then we investigate the ability

of Erdős-Rényi random graphs Gn,p to emulate the clique. This chapter is based

on results published in [12].

5.1 Introduction

Avin, Borokhovich, Lotker, and Peleg [8] proposed a novel network architec-

ture for parallel and distributed computing, called Core-Periphery networks.

This architecture is described implicitly by providing three axioms. One of these

axioms requires that the core C satisfies the following.

Clique emulation: the core can emulate the clique in a constant number of

rounds in the CONGEST model. That is, there is a communication pro-

tocol running in a constant number of rounds in the CONGEST model such

that, assuming that each node v ∈ C has a message Mv,w on O(log n) bits

for every w ∈ C, then, after O(1) rounds, every w ∈ C has received all

messages Mv,w, for all v ∈ C. In other words, the all-to-all communication

pattern can be implemented in a constant number of rounds.

Given this axiomatic description, it is not specified how to actually build a

graph that can satisfy the requirements. In other words, if we want to build

67

68 Clique Emulation

a Core-Periphery network, we need to find a graph and a routing schema as-

sociated to this graph, that is able to satisfy the axiom efficiently. In Figure 5.1

is depicted a graph that can emulate the clique communication in just three

rounds.

FIGURE 5.1: (left) Red edges are missing. (right) Emulation of missing edges

5.2 Our Goal

In this work, we are aiming at establishing tradeoffs between the number of

edges, and the capability of emulating the clique. More precisely, we consider

the all-to-all communication pattern:

• Input: every node v has a message Mv,w, for every node w 6= v;

• Output: every node w has received the message Mv,w, for every node

v 6= w.

In the CONGEST model, assuming all messages are on O(log n) bits, all-to-all

communication can be performed in just a single round if the graph is a clique.

Our objective is to study the tradeoff between the number of edges, and the

number of rounds for performing the all-to-all communication in the CONGEST

model.

Clique Emulation 69

5.3 Results

We show that, in the CONGEST model, implementing the all-to-all communica-

tion in k rounds can be done in n-node networks with roughly n2/k edges, and

this bound is essentially tight because every node must have degree at least

(n− 1)/k to receive n− 1 messages in at most k rounds. Hence, sparsifying the

clique beyond just saving a fraction of the edges requires to relax the constraint

on the time required to simulate that clique.

We also investigate the ability of random graphs to emulate the clique. Let us

define α =
√

3e/(e− 2), where e is the basis of the natural logarithm. We show

that, for p ≥ α
√

ln n/n, a random graph in Gn,p can, w.h.p., perform an all-to-all

communication in O(min{ 1
p2 , np}) rounds.

5.4 Related Work

Emulating the clique in Core-Periphery networks gives the ability to emulate

many algorithms designed for the Congested Clique, a different model that has

been widely studied in the literature. For example, we can emulate the routing

and sorting algorithms of Lenzen [65], which showed a deterministic algorithm

that, if each node is the sender and receiver of at most n messages, allows to

route all the messages in O(1) rounds in a clique of size n using messages of

size O(log n). Ghaffari et al. [46] showed how to solve a similar task in general

graphs. More precisely, they show that, given several packet routing requests,

such that each node v is the source and destination for at most d(v) packets,

where d is the degree of v, we can route all these packets from their sources to

their destinations in τmix · 2O(
√

log n log log n) rounds, where τmix is the mixing time

of the network.

A problem related to the clique emulation is broadcasting. Feige et al. [33] stud-

ied the broadcast problem in random graphs, where a single node has a mes-

sage that has to be received by all the nodes of the graph. They show that

rumor spreading (which propagates the message to a randomly chosen neigh-

bor at each step) is an efficient way to solve the broadcast problem for random

graphs. Censor-Hillel et al. [19] studied the broadcast problem in the context

where every node is the source of a message and it is limited to send the same

70 Clique Emulation

message to each neighbor at each round. They give an efficient algorithm that

solves the problem, also in case of failures.

Finally, it is worth mentioning that a problem related to ours, that is finding dis-

joint paths between pairs of nodes, has been largely investigated in expander

graphs, which are sparse graphs that guarantee strong connectivity proper-

ties [15, 41, 64, 42].

5.5 Deterministic Construction

In this section we provide a deterministic construction yielding a perfect trade-

off between number of edges and number of rounds in clique emulation.

Theorem 5.1. Let n ≥ 1, and k ≥ 3. There is an n-node graph with at most

d k−2
(k−1)2 n2e edges that can emulate the n-node clique in k rounds. Also, there is an

n-node graph with at most 1
3 n2 edges that can emulate the n-node clique in 2 rounds.

Proof. First, we show that there is an n-node graph with at most 1
3 n2 edges that

can emulate the n-node clique in 2 rounds. For this purpose, recall that the so-

called Johnson graph J(n, r) has vertex set composed of all the r-element subsets

of the set {1, . . . , n}, and two vertices are adjacent if and only if they meet in a

(r− 1)-element set.

Claim 1. There exists an independent set I of size at least d 1
n (

n
3)e in the Johnson

graph J(n, 3).

To establish the claim, for every k, 0 ≤ k < n, let us consider the set

Ik = {{x, y, z} ∈ V(J(n, 3)) | x + y + z ≡ k (mod n)}

Every set Ik is an independent set. Indeed, if two triples {x, y, z} and {x, y, z′}
are both in Ik, then x + y + z ≡ k (mod n) and x + y + z′ ≡ k (mod n). There-

fore, z ≡ z′ (mod n), which implies z = z′, because z, z′ ∈ {1, . . . , n}. Observe

that {I0, . . . , In−1} is a partition of V(J(n, 3)). Therefore, one of them has size

at least d 1
n (

n
3)e, which establishes the claim. In Figure 5.2 it is shown K5, J(5, 3),

and I = {{2, 3, 5}, {1, 4, 5}}.

Clique Emulation 71

1

2

34

5

{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}

FIGURE 5.2: (left) The clique of size five. (right) The Johnson graph J(5, 3), and
an independent set of size two.

Let I as in Claim 1. Note that for any {a, b, c} ∈ I, none of the edges {a, b},
{a, c}, {b, c} are appearing in any other triples of I. Thus, the edge {a, b} of the

complete graph can be emulated by the path {a, c}, {b, c} without congestion

resulting from the emulation of another edge {a′, b′}. Moreover, the edge {a, b}
itself does not belong to any path used to emulate other edges. It follows that

one can remove |I| edges from Kn, one from each triple in the independent set

I, and all removed edges can be emulated by edge-disjoint paths of length 2.

Figure 5.3 shows how to emulate the six communications x → y for every or-

dered pair (x, y), x ∈ {a, b, c}, y ∈ {a, b, c}, x 6= y, in just 2 rounds. It follows

that there is an n-node graph with at most n2

3 edges that can emulate the n-node

clique in 2 rounds.

m
(c, b)

m
(b, a)

m
(a, b)

m
(b, c)

m
(c
, a
)

m
(a
, b
)

m
(b
, a
)

m
(a
, c
)

round 1 round 1round 2 round 2

c

ba

FIGURE 5.3: Emulation of removed edge {a, b} (m(x, y) denotes the message
from x to y).

We now move on with the general case, that is, we show that there is an n-

node graph with at most dn2(k−2)
(k−1)2 e edges that can emulate the n-node clique in

k rounds.

72 Clique Emulation

b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0

FIGURE 5.4: Emulating K9 with K3,6. The plain red path (b0,1, a0, b0,2) is used
at the 1st round for exchanging messages between b0,1 and b0,2, and, at the 2nd

round, it is used for sending messages from b0,1 to b1,2, and from b0,2 to b1,1.

Claim 2. All-to-all communication between the nodes of the same part of the

complete bipartite graph Kr,r can be performed in 2 rounds.

Indeed, let A and B be the two parts of Kr,r, where the nodes in A and B are

labeled a0, . . . , ar−1 and b0, . . . , br−1, respectively. Let us consider ai ∈ A, and

its message for node aj ∈ A. This message is routed via node bk ∈ B where

i + j + k ≡ 0 (mod r). This guarantees that each edge is used at most once in

each direction, at each round. Indeed, sender ai chooses different intermediate

nodes to route messages to the different receivers aj, j 6= i. Similarly, for the

same receiver j, different senders ai, i 6= j, choose different intermediate nodes.

This proves Claim 2.

By performing the above routing scheme in parallel, we directly get the follow-

ing:

Claim 3. Let A and B be the two parts of the complete bipartite graph Kr,kr, and

let us partition the nodes of B into k groups B0, . . . , Bk−1 of r nodes each. The

k all-to-all communication patterns between the nodes of Bi can be performed

in parallel for all i ∈ {0, . . . , k − 1}, in 2 rounds, also in parallel to all-to-all

communication between the nodes of A.

We have now all the ingredients to establish the general case of Theorem 5.1. Let

k ≥ 1, and let Kr,kr be the n-node complete bipartite graph with r = n
k+1 nodes

in the first part A, and kr = nk
k+1 nodes in the other part B. Note that Kr,kr has

kr2 = n2k
(k+1)2 edges. We show how to perform all-to-all in Kr,kr in k + 2 rounds.

We divide the kr nodes of B into k groups B0, . . . , Bk−1 of r nodes each. For

i ∈ {0, . . . , k− 1}, we set Bi = {bi,j, 0 ≤ j ≤ r− 1}— cf. Figure 5.4. We describe

Clique Emulation 73

a routing scheme that allows the kr nodes of B to perform all-to-all, by relaying

their messages using the r nodes of A. Routing is achieved by repeating k times

the all to all routing protocol in Claim 3, where, at each phase s = 1, . . . , k, nodes

of Bi perform the communications with the nodes in Bj+s mod k. Importantly,

the above routing scheme does not require 2k rounds but only k + 1 rounds,

because the kr nodes in B do not have to wait for receiving relayed messages

in order to start sending new messages, and the phases can be pipelined. One

more round is used to route the direct communication between every node in A

and every node in B. Interestingly, during the k + 1 rounds needed to perform

all-to-all communications between the nodes in B, the edges are always used in

both directions, except for the first and last round. We can use these two rounds

to let the nodes in A perform their own all-to-all among them using the same

routing pattern as in Claim 2. In total, in the n2k
(k+1)2 -edge graph Kr,kr, all-to-all is

performed in k + 2 rounds.

We complete the section by showing that the bounds in Theorem 5.1 provide an

essentially optimal tradeoff between the number of rounds k performed in the

emulation, and the number of edges m of the emulator. A trivial lower bound
1
2

n(n−1)
k can be obtained by noticing that every node must have degree at least

n−1
k for receiving n− 1 messages in k rounds. The following theorem improves

this trivial bound by a factor 2, and matches with the bound in Theorem 5.1.

Property 1. Let n ≥ 1, k ∈ {1, . . . , n− 1}, and let G be an n-node graph that can

emulate the n-node clique in k rounds. Then G has at least n(n−1)
k+1 edges.

Proof. Let m be the number of edges of G. There are (n
2) pairs of nodes in Kn,

communicating n(n − 1) messages in total. In G, only m pairs of nodes are

directly connected. All the other (n
2) − m pairs of nodes are not directly con-

nected, and they are at least at distance 2 in G. Thus, the number of mesages

generated to route the messages corresponding to these pairs of nodes is at

least 4((n
2)−m). The total number of messages to be transferred is thus at least

2m + 4((n
2) − m). Since one communication round in G can route at most 2m

messages, it follows that any routing protocol requires at least 2m+4(n
2)−4m

2m =
n(n−1)

m − 1 rounds of communication. Thus, k ≥ n(n−1)
m − 1, which implies

m ≥ n(n−1)
k+1 .

Figure 5.5 compares the provided lower and the upper bounds.

74 Clique Emulation

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 5 10 15 20 25

Fr
a
ct

io
n

 o
f

e
d

g
e
s

Number of rounds

Upper bound
Lower bound

FIGURE 5.5: Number of edges necessary to emulate the clique communication.

5.6 Randomized Construction

In this section, we consider clique emulation by Erdős-Rényi random graphs

Gn,p. Our main result is the following.

Theorem 5.2. Let c ≥ 0, n ≥ 1, α =
√
(3 + c)e/(e− 2) where e is the base of the

natural logarithm, and p ≥ α
√

ln n/n. For G ∈ Gn,p,

Pr[G can emulate Kn in O(min{ 1
p2 , np}) rounds] ≥ 1−O(1

n1+c)

where the big-O notations hide the dependency in c.

Proof. Let G ∈ Gn,p. The proof works as follows. For each missing edge in G

between two nodes u and v, we route the messages between these nodes via an

intermediate node w, i.e., along a path (u, w, v) of length 2. The intermediate

node is picked at random among all nodes w such that {u, w} ∈ E(G), and

{w, v} ∈ E(G). To analyze the load of the edges, we have to overcome two

problems. First, the load of an edge is not necessarily independent from the

load of another edge. Second, we are interested in the maximum, taken over all

edges, of the load of the edges. As a consequence, an analysis based only on the

expectation of the load of each edge may not yield accurate results. Instead, we

base our analysis on a double application of a balls-into-bins protocol.

We aim at constructing a path for routing the messages between every pair of

nodes that are not directly connected in G. As said before, the alternative paths

Clique Emulation 75

used to replace missing edges are of length 2, and the probability expressed

in the statement of the theorem reflects the probability that such paths exist,

without too much congestion. More specifically, let us consider a missing edge

{i, j} in G. Let Si,j be the set of common neighbors to i and j in G. The message

from i to j is aimed at being routed via some intermediate node k ∈ Si,j. The first

question to address is thus: how large is Si,j? To answer this question, let Ei,j be

the event “there are at least np2

e different paths of length 2 between i and j”, and

let E =
⋂
{i,j}/∈E(G) Ei,j.

Claim 4. Let αc =
√
(c + 3)e/(e− 2), and p ≥ αc

√
ln n/n. Then

Pr[E] ≥ 1− 1
nc+1 .

To establish the claim, let Xi,j,k be the Bernoulli random variable, for {i, j} /∈
E(G), such that Xi,j,k = 1 iff k ∈ Si,j, i.e., {i, k} ∈ E(G) and {k, j} ∈ E(G). Then

let Xi,j = ∑n
k=1 Xi,j,k. We have Pr[Xi,j,k = 1] = p2, and, for a fixed pair i, j, the

variables Xi,j,k, k = 1, . . . , n, are mutually independent. Thus, using Chernoff

bounds, we get:

Pr[Xi,j ≤
np2

e
] ≤ e(

2
e−1)np2

.

By union bound, it follows that

Pr[
⋃

{i,j}/∈E(G)

Ei,j] ≤ n2e(
2
e−1)np2 ≤ 1

nc+1

as desired, where the last inequality holds because p ≥ αc
√

ln n/n.

In addition to Claim 4, we will also use the following known result:

Lemma 5.3 ([71]). Let X1, . . . , Xn be a sequence of random variables in an arbitrary

domain, and let Y1, . . . , Yn be a sequence of binary random variables, with the property

that Yi is a function of the variables X1, . . . , Xi−1. If, for every i = 1, . . . , n, we have

Pr[Yi = 1|X1, . . . , Xi−1] ≤ q then Pr[∑n
i=1 Yi ≥ k] ≤ Pr[B(n, q) ≥ k] where B(n, q)

denotes the binomial distribution of parameters n and q.

Our path construction algorithm for every missing edge {i, j} /∈ E(G) is se-

quential, and proceeds as follows. For every {i, j} /∈ E(G), the path from i to j

is not necessarily the same as the path from j to i. We process all ordered pairs of

nodes (i, j) in n phases, where Phase i, i = 1, . . . , n, constructs all paths (i, j) for

76 Clique Emulation

{i, j} /∈ E(G), in increasing order of j. Assume already fixed a set of paths, cor-

responding to previously considered sender-receiver pairs, and consider now

the pair (i, j) (of course corresponding to the missing edge {i, j} /∈ E(G)). The

previously constructed paths induce some load on each edge of G, correspond-

ing to the number of paths using that edge. The choice of the path for (i, j)

depends on this load, and is inspired from the power of two choices in balls-

and-bins protocols. Precisely, for suitable parameters d and r, node i repeats r

times the following: pick d incident edges {i, k} uniformly at random, and se-

lect the least loaded one. Once this is done, node j picks the least loaded edge

among the r edges selected by i.

Let Ii,j be the node selected to route the message from sender i to receiver j.

Messages from i to j will be routed along the path Pi,j = (i, Ii,j, j). For h ≥
0, let bi,h(j) be the number of edges {i, k} of load at least h after deciding the

intermediate nodes Ii,1, . . . , Ii,j of the first j receivers for sender i. We define the

following quantities:

x =

⌈
e5+c

p2

⌉
and β =

np2

e5+c .

Since bi,x(n) ≤ n/x, it follows from the above that bi,x(n) ≤ β. Now, let

`(j) = |{j′ ≤ j : Ii,j′ = Ii,j}|.

We define the random variables Zi,j where

Zi,j =

{
1 if `(j) ≥ x + 1

0 otherwise.

Hence Zi,j = 1 is the bad event that the edge between node i and the intermedi-

ate node Ii,j used to route from i to j is heavily loaded by i. Conditioned on the

fact that E holds (cf. Claim 4), we get that

Pr[Zi,j = 1] ≤ r
(

β

np2/e

)d
.

We let q be the right hand side of the above equation. Let us now consider

Zi = ∑n
j=1 Zi,j. Observe that Zi,j is a function of Ii,1, . . . , Ii,j−1. Therefore, by

Lemma 5.3 we get that

Pr[Zi ≥ k] ≤ Pr[B(n, q) ≥ k].

Clique Emulation 77

So, in particular, Pr[Zi ≥ 1] ≤ Pr[B(n, q) ≥ 1]. We now set d = ln n, and r ≤ n

(a suitable r will be specified thereafter). Thanks to this choice of d and r, we

have q ≤ 1
n3+c , and therefore

Pr[Zi ≥ 1] ≤ Pr[B(n,
1

n3+c) ≥ 1] ≤ E[B(n,
1

n3+c)] ≤
1

n2+c .

Let Z = ∑n
i=1 Zi. By union bound, we get Pr[Z ≥ 1] ≤ 1

n1+c .

Using a similar analysis, from the perspective of the receiver, and defining the

corresponding random variables Z′i,j capturing the load of the edges incident to

a receiver j, and Z′j = ∑n
i=1 Z′i,j, we get

Pr[Z′j ≥ 1] ≤ Pr[B(n, q′) ≥ 1]

where

q′ =

(
1−

(
1− eβ

np2

)d
)r

.

We get q′ ≤ 1
n3+c by setting d = ln n and r = (c+ 3) nε ln n for ε = − ln(1− 1

e4+c).

By this setting of d and r, we get that

Pr[Z′j ≥ 1] ≤ Pr[B(n,
1

n3+c) ≥ 1] ≤ E[B(n,
1

n3+c)] ≤
1

n2+c .

Let Z′ = ∑n
j=1 Z′j. By union bound, we get Pr[Z′ ≥ 1] ≤ 1

n1+c .

Therefore, altogether, we get that

Pr[Z = 0 and Z′ = 0 | E] · Pr[E] ≥ (1− 1
n1+c)

3 ≥ 1− 3
n1+c .

In other words, w.h.p., the load of all edges is no more than x = O(1/p2). On

the other hand, with a similar argument as for proving that the degree is large,

we have that, w.h.p., the degree of all nodes is at most enp, and therefore the

load of an edge does not exceed enp.

78 Clique Emulation

5.7 Conclusions

In this work, we first provided a deterministic graph construction yielding a

perfect tradeoff between number of edges and number of rounds required to

emulate the all to all communication. Then, we have shown how to emulate

the clique by a random graph in Gn,p in O(min{ 1
p2 , np}) rounds, w.h.p. Hence,

on dense random graphs (i.e., p = Ω(1)), our simulation performs in just a

multiplicative constant factor away from the optimal, and, on sparse graphs

(i.e., p '
√

log n/n), it performs just a log n factor away from the optimal.

However, in general, whenever p � 1
3√n

, it performs in O(1
p2) rounds, which

is a factor O(1
p) away from the trivial lower bound Ω(1

p). Ghaffari et al. [46]

recently improved this result to O(1
p + log n). An intriguing question is whether

the n-node clique can be simulated by Gn,p in just O(1
p) rounds. Also, our result

shows that it is possible to emulate the clique on random graphs efficiently, but

it does not provide a way to distributedly build the required routing schema.

This is left as an open problem.

Chapter 6

MST In Core-Periphery Networks

In this chapter we investigate the MST construction problem in Core-Periphery

networks. We provide a deterministic algorithm that solves the task in O(log n)

rounds, improving an existing randomized algorithm that requires O(log2 n)

rounds. This chapter is based on results published in [12].

6.1 Introduction

In [8], Avin, Borokhovich, Lotker, and Peleg showed that Core-Periphery net-

works can be a powerful alternative to the Congested Clique model. They stud-

ied various problems, such as MST construction, median and mode finding,

matrix transposition and multiplication. For many problems they provided al-

gorithms that construct solutions efficiently. They also showed that if only two

axioms hold, then it is possible to prove lower bounds that are much higher

than the upper bounds that hold when the graph satisfies all the three axioms

of the Core-Periphery networks (Figure 6.1 shows graphs that satisfy only two

out of the three axioms). For the Minimum Spanning Tree construction prob-

lem, they provided a randomized algorithm running in O(log2 n) rounds.

We revisit one of the main problems left open in [8], namely the complexity of

MST construction in the core-periphery model. In fact, in [8], authors show a

randomized algorithm that solves MST in O(log2 n) rounds. Hence, an open

question was to investigate if there is a more efficient deterministic algorithm

that solves MST.

79

80 MST in Core-Periphery Networks

2 and 3 1 and 3

1 and 2

FIGURE 6.1: Graphs that satisfy only 2 axioms of Core-Periphery networks.

6.2 Results

We design a fast deterministic MST construction algorithm for Core-Periphery

networks under the CONGEST model. We show that there exists a distributed

MST construction algorithm performing in O(log n) rounds, improving the ran-

domized algorithm in [8] by a factor of Θ(log n).

6.3 MST Construction

In [8], a randomized algorithm for Minimum Spanning Tree (MST) construction

is presented. It runs in O(log2 n) rounds with high probability. We improve this

result by describing a deterministic algorithm for MST construction that runs in

just O(log n) rounds. Recall that, for the MST construction task, every node is

given as input the weight w(e) of each of its incident edges e. These weights

are supposed to be of values polynomial in the size n of the network, and thus

each weight can be stored on O(log n) bits. The output of every node is a set of

incident edges, such that the collection of all outputs forms an MST of the net-

work. Without loss of generality, all weights are supposed to be different (since,

MST in Core-Periphery Networks 81

otherwise, it is sufficient to add to each edge the identities of the extremities of

that edge).

Theorem 6.1. The MST construction task can be solved in O(log n) rounds in core-

periphery networks under the CONGEST model.

Proof. As usually in the distributed setting, the general idea of the algorithm is

based on the sequential Borůvka’s algorithm for MST construction, consisting

in merging subtrees called fragments. Recall that, in Borůvka’s algorithm, there

are initially n fragments, where each node alone forms a fragment. Each frag-

ment has an ID. Initially, the identity of each fragment is the ID of the single

node in the fragment. Then the algorithm proceeds in at most dlog2 ne phases.

At each phase, each fragment F computes the edge eF of minimum weight in-

cident to fragment F, and adds it to the MST. Fragments connected by such an

edge merge, and a new phase begins. This procedure is repeated until there is

only one fragment, which is the desired MST.

We first present a (deterministic) distributed algorithm running in O(log2 n)

rounds in core-periphery networks. This algorithm is composed of at most

dlog2 ne phases, where each phase requires O(log n) rounds. Then, we show

how to perform each phase in O(1) rounds, obtaining the desired O(log n)

rounds algorithm. Recall that a core-periphery network satisfies the three ax-

ioms listed in Section 2.5 where C and P denote the sets of nodes in the core and

in the periphery, respectively.

The algorithm starts by an initialization phase, where each node in the periph-

ery looks for a node in the core, which will be its representative. By Axiom 3 all

nodes in the periphery can concurrently send messages to the core so that each

message will be received by at least one node in the core after O(1) rounds. So,

each node in the periphery sends a request for a representative by sending its

own ID to the core. Every node in the periphery then waits for an acknowl-

edgment from nodes in the core that accepted its request. These acknowledge-

ments follow the same route as the corresponding requests, backward. Hence,

all acknowledgments are also received after O(1) rounds. Every node takes as

representative the core node whose acknowledgment reaches that node first.

If a node receives several acknowledgments simultaneously, then it selects the

one with the smallest ID. By Axiom 1, each node in the core can be the repre-

sentative of at most O(|C|) nodes in the periphery because its degree is at most

82 MST in Core-Periphery Networks

O(|C|), and thus it can receive at most O(|C|) messages in O(1) rounds. Every

node in the core is its own representative.

We assume that the nodes in the core are sorted according to their IDs (this

operation can be done in O(1) rounds using all-to-all and Axiom 2). For ev-

ery node in the core, we denote by succ(u) and pred(u) the successor and the

predecessor of u in this order, respectively.

We heavily use the protocols in [65]. Note that the routing protocol in [65] re-

quires that each node is the the source and destination of at most n messages.

However, it can be trivially adapted to be applied with O(n) messages, still

requiring O(1) rounds. Similarly, the sorting protocol in [65] requires that each

node receives at most n keys, but, again, it can be trivially modified for allowing

each node to receive O(n) keys, still requiring O(1) rounds.

We now explain how every phase of Borůvka’s algorithm is performed.

1. Every node sends the ID of its fragment to all its neighbors.

2. Let r(v) ∈ C and id(F) be the representative and the ID of the fragment F

of node v, respectively. We denote by eF(v) the edge of minimum weight

incident to v and connecting v to a node not in its fragment F. Each node

v in the periphery sends (eF(v), w(eF(v)), id(F), id(F′)) to r(v), where the

tail of eF(v) belongs to F, and its head belongs to fragment F′ 6= F. Ob-

serve that each node in the core receives O(|C|) such messages.

3. Every node in the core, upon reception of 4-tuple

(eF(v), w(eF(v)), id(F), id(F′))

from the nodes that it represents (including itself), selects the ones with

minimum weight for each fragment F. We denote by S1 the set of the

selected edges by all nodes in the core. Note that |S1| = O(|C|2).

4. The algorithm assigns a leader to each fragment. The leaders are core

nodes chosen in such a way that the fragments are equally distributed

among leaders. Let

x = d|S1|/|C|e.

MST in Core-Periphery Networks 83

Note that x = O(|C|). Given a fragment F, its leader is

`(F) = 1 +
⌊ |{(u, v) ∈ S1 : id(Fu) < id(F)}|

x

⌋
where Fu is the fragment of u. Note that 1 ≤ `(F) ≤ |C|. For each fragment

F, all edges incident to F in S1 are sent to `(F) by its representative holding

such edges — we shall explain hereafter how this is implemented in core-

periphery networks. In this way each leader can select the edge eF of

minimum weight incident to fragment F. Let S2 be the set of all edges eF,

where F is a fragment.

5. The algorithm then aims at merging the fragments. We call merge tree a

tree whose nodes are fragments F, and whose edges are the edges eF con-

necting these fragments. Note that, in a merge tree, there are two adjacent

fragments F and F′ connected by two possibly distinct edges eF and eF′ .

The fragment with smallest ID that is extremity of such an edge is the root

of the merge tree. The algorithm proceeds so that each leader `(F) of a

fragment F in the merge tree becomes aware of the root of the tree. The

ID of this root will become the ID of the fragment resulting from merg-

ing all the fragments in the merge tree. It is possible to find the root of a

tree of height h in O(log h) steps using pointer jumping — we shall explain

hereafter how this is precisely implemented in core-periphery networks.

6. By the previous step, for every fragment F, its leader `(F) knows the ID

of the merge tree it belongs to. Moreover, for each edge (u, v) that was re-

ceived by a leader from the representative r(u) in step 4, the leader saved

id(r(u)). This allows leaders to notify the right representatives of the ID

of the root of the merge tree.

7. Finally, the ID of every merged fragment is sent to every node v of the

periphery from its representative r(v) in the core.

It remains to explain how steps 4 and 5 are actually performed.

Step 4 in more details. First, observe that the parameter x = d|S1|/|C|e can be

computed at each node of the core, as performing all-to-all communication in

the core allows each core node to compute |S1|. Now, we show how to distribute

84 MST in Core-Periphery Networks

the fragments among the leaders such that leader `(F) becomes aware of the

edges eF(v) ∈ S1 incident to F.

The edges (u, v) ∈ S1 are sorted according to the ID of the fragment Fu its tail

belongs to, and are then split into groups of x edges. Again, this operation can

be done in O(1) rounds using the sorting protocol in [65] because x = O(|C|).
The k-th group is assigned to the k-th node of the core.

Let us consider a core node u, and let F (u) be the set of fragments F such

that `(F) = u. Let us denote by idmax(u) (resp., idmin(u)) the maximum ID

(resp., minimum ID) of the fragments F ∈ F (u). Having sorted the set S1

guaranties that the leader u receives all the edges assigned to it, except perhaps

some edges starting from fragment idmax(u) that could have been delivered to

succ(u). However, there are at most x− 1 such edges, since the representatives

kept at most one edge per fragment. So, every core node u can send idmax(u) to

succ(u), in order to let that node know that the leader of the fragment with ID

equal to idmax(u) should be u, and not succ(u). Since each node u has then at

most x− 1 messages to transmit to pred(u), we can transmit these messages us-

ing the routing protocol in [65]. Now each leader u has all the outgoing edges of

each fragment F with `(F) = u. Thus, u can compute eF for each of these frag-

ments. Finally, each node u in the core broadcasts the pair (idmin(u), idmax(u))

in the core so that every node in C learns the leader of each fragment.

Note that, while sorting and routing, every node keeps track of the ID of the

representative nodes which originally received every edge that is manipulated

by that node (this is needed in step 6).

Step 5 in more details. We show how to perform the first step of pointer jump-

ing. Recall that, for every fragment F, the leader `(F) knows eF. This latter edge

is the one leading toward the root of the merge tree. Assume that eF = (u, v),

with u ∈ F and v ∈ F′. The objective for the leader `(F) is to learn to which

fragment F′′ is pointing the edge eF′ = (u′, v′) with u ∈ F′ and v′ ∈ F′′. In

other words, if p denotes the parent relation in a merge tree, the leader `(F) of

fragment F wants to learn the ID of p(p(F)). The bad news is that `(F) can-

not directly ask id(p(p(F))) to `(p(F)) because this could create a bottleneck at

`(p(F)). Nevertheless this issue can be overcame as follows.

MST in Core-Periphery Networks 85

First, the edges in S2 are sorted according to the IDs of the fragment of their

heads, and grouped into groups whose heads belong to the same fragment. In

this way, only one request is sent for each group (to the leader of the corre-

sponding fragment). Since x = d|S1|/|C|e, we have x = O(|C|), and thus the

number of requests that each leader has to make is at most O(|C|).

Second, every leader does not receive more than O(|C|) requests. Indeed, let

qu,v be the number of different fragments for which a node u in the core has to

send a request to leader v. Let Fi1 , Fi2 , . . . , Fiqu,v
be these fragments, with `(Fi1) =

`(Fi2) = · · · = `(Fiqu,v
) = v, and i1 < i2 < · · · < iqu,v . Recall that the edges in S2

are sorted according to the IDs of the fragment of their heads. Thus, if qu,v > 1

then the fragments Fi2 , . . . , Fiqu,v
do not appear in any list of fragments assigned

to nodes with identity smaller than id(u). Therefore, leader v receives at least

∑u∈C(qu,v − 1) requests for different fragments. On the other hand, every core

node v is the leader of at most x fragments. Therefore ∑u∈C(qu,v − 1) ≤ x.

Hence the number of requests received by v is ∑u∈C qu,v = O(|C|).

These two facts, allow the routing protocol in [65] to be used, for sending the

requests to the leaders, and for receiving back their answers. Once this is done,

every node u sends id(p(p(F))) to `(F), for every F ∈ F (u) in a constant num-

ber of rounds, again using [65]. It follows that every leader u can learn the ID

of p(p(F)) for every F ∈ F (u) in a constant number of rounds.

Time analysis. The initialization phase can be performed in a constant num-

ber of rounds thanks to Axiom 3. Step 1 trivially requires O(1) rounds. Step

2 also requires O(1) rounds thanks to Axiom 3. Step 3 is executed locally by

each node, thus it does not require communication. Step 4 can be executed in

O(1) rounds using the sorting protocol in [65] because x = O(|C|). Step 6 can

also be performed in O(1) rounds using the routing protocol in [65] because

each leader handles O(|C|) edges (for which it has to send a fragment ID), and

each representative has to receive O(|C|) messages (one for each edge it has

to receive a new fragment ID). The last step is the inverse of step 2, and thus

can still be executed in O(1) rounds. Step 5 however requires O(log n) rounds

because the merge tree might be of height Ω(nε) for some ε > 0. Since the

number of phases is also O(log n), the total number of rounds of this algorithm

is O(log2 n).

86 MST in Core-Periphery Networks

A faster algorithm. Now, we describe how to modify the above algorithm so

that it uses only O(1) rounds for each phase, hence O(log n) rounds in total.

Since the only step that requires a non constant number of rounds is Step 5, we

show how to perform that step in O(1) rounds.

The idea is to use a technique introduced first in [70], and also used in Avin et

al. [8], called amortized pointer jumping. The reduction of long chains of pointers

is deferred to later phases of Borůvka’s algorithm, and only a constant number

of pointer jumps are performed at each phase. This technique exploits the fact

that, if a chain is long, it must contain many fragments. As a consequence,

when pointer jumping completes, the resulting fragment is quite large, and

other nodes involved in small fragments may continue building the MST in

parallel, without waiting for large fragments to be constructed.

We show how to do a constant number of pointer jumping steps, then freezing

the procedure, and resuming it later in the next phase of Borůvka’s algorithm.

At each step of pointer jumping, every leader u can know, for every F ∈ F (u), if

the root of the merge tree has been reached. Suppose that the root has not been

reached by u after a constant number of pointer jumping (i.e., the leader does

not know yet the new ID of the merged fragment), and that u is currently point-

ing at fragment F′. In the following, node u adds a flag in its messages, which

specifies that the fragment has not been resolved yet, and that it stopped at F′.

This flag will be propagated to all nodes that proposed edges that start from un-

resolved fragments. At the next phase of Borůvka’s algorithm, these nodes will

propose again the same edges, by specifying also F′. Fragment F′ will be used

as if it was the destination fragment of the edge. In this way, for every frag-

ment F in a merge tree whose merging has not yet been performed, the same

edge eF as before will be chosen, and other steps of pointer jumping will be per-

formed. This insures that nodes belonging to fragments in such merge trees do

not propose new edges, thus emulating a full execution of pointer jumping.

After having reduced the number of rounds for performing step 5 from O(log n)

to O(1), amortized, we get that the resulting algorithm just requires O(log n)

rounds to construct a MST.

MST in Core-Periphery Networks 87

6.4 Conclusions

In this work, we have proposed a deterministic MST construction algorithm for

core-periphery networks that performs in O(log n) rounds, improving the pre-

viously known (randomized) algorithm by a factor Θ(log n). Recent advances

in the Congested Clique model demonstrate that ultra fast MST algorithms ex-

ist for this later model, namely, a O(1)-round randomized algorithm [59], and

a O(log log n)-round deterministic algorithm [69]. Since no lower bounds have

been proved for Core-Periphery networks, an intriguing question is whether

such ultra fast algorithms exist for this model.

Chapter 7

Conclusions and Open Problems

In this thesis we studied different aspects of distributed computing. In Chapter

3 we focused on problems related to subgraph detection. We initially showed

how to detect any fixed tree T of constant size in a constant number of rounds.

We then applied this result to distributed property testing, by showing that

for any pattern H composed by an edge e, a tree T, and arbitrary connections

between the nodes of e and the nodes of T, we can test H-freeness in constant

time in graphs that are far from being H-free. This result allows to distributedly

detect the presence of important patterns, like cycles Ck for any k ≥ 3, the clique

of four nodes K4, complete bipartite graphs K2,k for any k ≥ 1, or two nodes

connected by k paths of constant length.

The graph of minimum size that is not contained in the aforementioned class

is the clique of size five, K5. For this particular pattern we do not know if it is

possible to test its absence in constant time. In this case, we can still easily find

in constant time an edge that is part of K5, but then we would need to detect

a triangle composed by nodes that are all connected to the endpoints of the

chosen edge. This problem finds analogies in the coordinator model, where all

the nodes of a graph are connected to a central authority that helps the nodes to

solve a task. In our setting the coordinator would be one of the two endpoints.

Since it is not known how to detect triangles in the coordinator model (we do

not even know how to solve it in constant time in a very strong model such

as the Congested Clique), this does not seem to be the right way to address

the problem of detecting K5. Instead, it would be a really interesting research

question to understand something more general related to distributed property

89

90 Conclusions and Open Problems

testing, that is, if the ability of efficiently choose a “good” edge is all what this

model can offer (and thus be equivalent to the coordinator model), or if we can

exploit the presence of many copies of H in a more clever way.

In Chapter 4 we examined the role of the bandwidth in distributed computing,

by investigating how much the speed of a distributed algorithm can scale while

changing the amount of allowed bandwidth. We modified algorithms designed

to use messages of size O(log n), to be time efficient when more bandwidth is

allowed. We showed that different problems exhibit different behaviors. For

example, while the time complexity of the APSP problem fully scales with the

available bandwidth, the time complexity of the MST problem does not. Since

in real world networks the latency could dominate the computational time, one

could be interested in reducing the number of rounds at the cost of using more

bandwidth. This work suggests that when we provide algorithms for the CON-

GEST model, we should analyze it on a wider spectrum of bandwidths, since

limiting the analysis only to the case where the available bandwidth is loga-

rithmic could hide some important details about the nature of the problem. It

would be really interesting to further investigate this phenomenon, that is, it

may be the case that there is a direct connection between time complexity and

ability to scale. For example, it would be nice to understand if all problems that

require linear time, like APSP, can fully scale with the available bandwidth, and,

on the other hand, if all problems that can be solved in sublinear time, like MST,

can not.

In Chapters 5 and 6 we studied problems related to the Core-Periphery model.

First, we showed graphs that are able to emulate the clique communication ef-

ficiently, by first providing graphs that achieve an optimal tradeoff between the

number of edges and the rounds required to perform the all-to-all communi-

cation, and then by showing that Erdős-Rényi random graphs Gn,p can emu-

late the clique communication efficiently. Then, we showed an efficient way to

solve the Minimum Spanning Tree construction problem in this model. Core-

Periphery networks are a nice alternative to the Congested Clique model, since

they can solve many tasks efficiently, while still using a number of edges that

is linear in the number of nodes. For this model no lower bounds are known,

and an intriguing question is to understand the real power of Core-Periphery

networks, for example by trying to see if ultra fast MST algorithms designed

Conclusions and Open Problems 91

for the Congested Clique can be used in this model to solve the MST problem

in o(log n) rounds.

Bibliography

[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower

bounds for distributed distance computations, even in sparse networks. In

30th International Symposium in Distributed Computing (DISC), pages 29–42,

2016.

[2] Noga Alon, Sonny Ben-Shimon, and Michael Krivelevich. A note on regu-

lar ramsey graphs. Journal of Graph Theory, 64(3):244–249, 2010.

[3] Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Effi-

cient testing of large graphs. Combinatorica, 20(4):451–476, 2000.

[4] Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron. Testing

triangle-freeness in general graphs. SIAM J. Discrete Math., 22(2):786–819,

2008.

[5] Noga Alon and Asaf Shapira. A characterization of easily testable induced

subgraphs. Combinatorics, Probability & Computing, 15(6):791–805, 2006.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,

42(4):844–856, 1995.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given

length cycles. Algorithmica, 17(3):209–223, 1997.

[8] Chen Avin, Michael Borokhovich, Zvi Lotker, and David Peleg. Dis-

tributed computing on core-periphery networks: Axiom-based design.

In 41st International Colloquium on Automata, Languages, and Programming

(ICALP), pages 399–410, 2014.

[9] Alkida Balliu, Gianlorenzo D’Angelo, Pierre Fraigniaud, and Dennis

Olivetti. What can be verified locally? In 34th Symposium on Theoretical

Aspects of Computer Science (STACS), 2017.

93

94 Bibliography

[10] Alkida Balliu, Michele Flammini, Giovanna Melideo, and Dennis Olivetti.

Nash stability in social distance games. In Proceedings of the Thirty-First

AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco,

California, USA., pages 342–348, 2017.

[11] Alkida Balliu, Michele Flammini, and Dennis Olivetti. On pareto optimal-

ity in social distance games. In Proceedings of the Thirty-First AAAI Con-

ference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,

USA., pages 349–355, 2017.

[12] Alkida Balliu, Pierre Fraigniaud, Zvi Lotker, and Dennis Olivetti. Spar-

sifying congested cliques and core-periphery networks. In Structural In-

formation and Communication Complexity - 23rd International Colloquium,

SIROCCO 2016, Helsinki, Finland, July 19-21, 2016, Revised Selected Papers,

pages 307–322, 2016.

[13] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph

Lenzen. Approximate undirected transshipment and shortest paths via

gradient descent. CoRR, abs/1607.05127, 2016.

[14] Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-

cliques. Distributed Computing, 24(2):79–89, 2011.

[15] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Existence and con-

struction of edge-disjoint paths on expander graphs. SIAM J. Comput.,

23(5):976–989, 1994.

[16] Luciana Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. Counting triangles in data streams. In

25th ACM Symposium on Principles of Database Systems (PODS), pages 253–

262, 2006.

[17] Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Va-

sudev. Fast distributed algorithms for testing graph properties. In 30th Int.

Symposium on Distributed Computing (DISC), volume 9888 of LNCS, pages

43–56. Springer, 2016.

[18] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen,

Ami Paz, and Jukka Suomela. Algebraic methods in the congested clique.

In ACM Symposium on Principles of Distributed Computing (PODC), pages

143–152, 2015.

Bibliography 95

[19] Keren Censor-Hillel and Tariq Toukan. On fast and robust information

spreading in the vertex-congest model. In 22nd International Colloquium

on Structural Information and Communication Complexity (SIROCCO), pages

270–284, 2015.

[20] David Conlon and Jacob Fox. Graph removal lemmas. CoRR,

abs/1211.3487, 2012.

[21] Artur Czumaj, Oded Goldreich, Dana Ron, C. Seshadhri, Asaf Shapira,

and Christian Sohler. Finding cycles and trees in sublinear time. Random

Struct. Algorithms, 45(2):139–184, 2014.

[22] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon

Nanongkai, Gopal Pandurangan, David Peleg, and Roger Wattenhofer.

Distributed verification and hardness of distributed approximation. In

43rd ACM Symposium on Theory of Computing (STOC), pages 363–372, 2011.

[23] Danny Dolev, Christoph Lenzen, and Shir Peled. Tri, tri again: Finding

triangles and small subgraphs in a distributed setting. In 26th International

Symposium on Distributed Computing, pages 195–209, 2012.

[24] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of

the congested clique model. In ACM Symposium on Principles of Distributed

Computing (PODC), pages 367–376, 2014.

[25] Michael Elkin. A faster distributed protocol for constructing a minimum

spanning tree. In ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 359–368, 2004.

[26] Michael Elkin. Distributed exact shortest paths in sublinear time. CoRR,

abs/1703.01939, 2017.

[27] Michael Elkin. A simple deterministic distributed MST algorithm, with

near-optimal time and message complexities. CoRR, abs/1703.02411, 2017.

[28] Yuval Emek, Christoph Pfister, Jochen Seidel, and Roger Wattenhofer.

Anonymous networks: randomization = 2-hop coloring. In 33rd ACM

Symposium on Principles of Distributed Computing, pages 96–105, 2014.

[29] David Eppstein. Subgraph isomorphism in planar graphs and related

problems. J. Graph Algorithms Appl., 3(3), 1999.

96 Bibliography

[30] Paul Erdös, Peter Frankl, and Vojtech Rödl. The asymptotic number of

graphs not containing a fixed subgraph and a problem for hypergraphs

having no exponent. Graphs and Combinatorics, 2(1):113–121, 1986.

[31] Paul Erdős, András Hajnal, and J. W. Moon. A problem in graph theory.

The American Mathematical Monthly, 71(10):1107–1110, 1964.

[32] Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti

Medina, Pedro Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapa-

port, and Ioan Todinca. Three notes on distributed property testing. In

31th International Symposium in Distributed Computing (DISC), 2017.

[33] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal. Randomized

broadcast in networks. Random Struct. Algorithms, 1(4):447–460, 1990.

[34] Laurent Feuilloley and Pierre Fraigniaud. Randomized local network com-

puting. In 27th ACM Symposium on Parallelism in Algorithms and Architec-

tures (SPAA), pages 340–349, 2015.

[35] Laurent Feuilloley and Pierre Fraigniaud. Survey of distributed decision.

Bulletin of the EATCS, 119:41–65, 2016.

[36] Laurent Feuilloley, Pierre Fraigniaud, and Juho Hirvonen. A hierarchy of

local decision. In 43rd Int. Colloquium on Automata, Languages, and Program-

ming (ICALP), pages 118:1–118:15, 2016.

[37] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David

Peleg. Randomized distributed decision. Distributed Computing, 27(6):419–

434, 2014.

[38] Pierre Fraigniaud, Amos Korman, and David Peleg. Towards a complexity

theory for local distributed computing. J. ACM, 60(5):35:1–35:26, 2013.

[39] Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles.

In 29th ACM on Symposium on Parallelism in Algorithms and Architectures

(SPAA), 2017.

[40] Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed

testing of excluded subgraphs. In 30th Int. Symposium on Distributed Com-

puting (DISC), volume 9888 of LNCS, pages 342–356. Springer, 2016.

Bibliography 97

[41] Alan M. Frieze. Disjoint paths in expander graphs via random walks: A

short survey. In Second International Conference on Randomization and Ap-

proximation Techniques in Computer Science (RANDOM), pages 1–14, 1998.

[42] Alan M. Frieze. Edge-disjoint paths in expander graphs. In 11th ACM-

SIAM Symposium on Discrete Algorithms (SODA), pages 717–725, 2000.

[43] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks

cannot compute their diameter in sublinear time. In 23rd ACM-SIAM Sym-

posium on Discrete Algorithms (SODA), pages 1150–1162, 2012.

[44] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed

algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang.

Syst., 5(1):66–77, 1983.

[45] Juan A. Garay, Shay Kutten, and David Peleg. A sublinear time dis-

tributed algorithm for minimum-weight spanning trees. SIAM J. Comput.,

27(1):302–316, 1998.

[46] Mohsen Ghaffari, Fabian Kuhn, and Hsin-Hao Su. Distributed MST and

routing in almost mixing time. In Proceedings of the ACM Symposium on

Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July

25-27, 2017, pages 131–140, 2017.

[47] Mohsen Ghaffari and Merav Parter. Mst in log-star rounds of congested

clique. In 35th ACM Symposium on Principles of Distributed Computing

(PODC), 2016.

[48] Oded Goldreich and Dana Ron. Property testing in bounded degree

graphs. Algorithmica, 32(2):302–343, 2002.

[49] Oded Goldreich and Luca Trevisan. Three theorems regarding testing

graph properties. Random Struct. Algorithms, 23(1):23–57, 2003.

[50] Mika Göös and Jukka Suomela. Locally checkable proofs in distributed

computing. Theory of Computing, 12(1):1–33, 2016.

[51] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B.

Sardeshmukh, and Michele Scquizzato. Toward optimal bounds in the

congested clique: Graph connectivity and MST. In ACM Symposium on

Principles of Distributed Computing (PODC), pages 91–100, 2015.

98 Bibliography

[52] James W. Hegeman and Sriram V. Pemmaraju. Lessons from the congested

clique applied to MapReduce. Theor. Comput. Sci., 608:268–281, 2015.

[53] James W. Hegeman, Sriram V. Pemmaraju, and Vivek Sardeshmukh. Near-

constant-time distributed algorithms on a congested clique. In 28th Int.

Symposium on Distributed Computing (DISC), pages 514–530, 2014.

[54] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A

deterministic almost-tight distributed algorithm for approximating single-

source shortest paths. In Proceedings of the 48th Annual ACM SIGACT Sym-

posium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,

2016, pages 489–498, 2016.

[55] Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs

shortest paths and applications. In ACM Symposium on Principles of Dis-

tributed Computing (PODC), pages 355–364, 2012.

[56] Qiang-Sheng Hua, Haoqiang Fan, Lixiang Qian, Ming Ai, Yangyang Li,

Xuanhua Shi, and Hai Jin. Brief announcement: A tight distributed algo-

rithm for all pairs shortest paths and applications. In Proceedings of the 28th

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016,

Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 439–441,

2016.

[57] Taisuke Izumi and François Le Gall. Triangle finding and listing in CON-

GEST networks. In ACM Symposium on Principles of Distributed Computing

(PODC), 2017.

[58] Stasys Jukna and Georg Schnitger. Triangle-freeness is hard to detect. Com-

binatorics, Probability, & Computing, 11(6):549–569, 2002.

[59] Tomasz Jurdzinski and Krzysztof Nowicki. MST in O(1) rounds of the

congested clique. CoRR, abs/1707.08484, 2017.

[60] Valerie King, Shay Kutten, and Mikkel Thorup. Construction and im-

promptu repair of an MST in a distributed network with o(m) communica-

tion. In Proceedings of the 2015 ACM Symposium on Principles of Distributed

Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21 - 23, 2015,

pages 71–80, 2015.

Bibliography 99

[61] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes.

Distributed Computing, 22(4):215–233, 2010.

[62] Shay Kutten and David Peleg. Fast distributed construction of small k-

dominating sets and applications. J. Algorithms, 28(1):40–66, 1998.

[63] Tom Leighton. Introduction to Parallel Algorithms and Architectures. Morgan

Kaufmann, 1992.

[64] Tom Leighton, Satish Rao, and Aravind Srinivasan. Multicommodity flow

and circuit switching. In 31st Hawaii International Conference on System Sci-

ences, pages 459–465, 1998.

[65] Christoph Lenzen. Optimal deterministic routing and sorting on the con-

gested clique. In ACM Symposium on Principles of Distributed Computing

(PODC), pages 42–50, 2013.

[66] Christoph Lenzen and Boaz Patt-Shamir. Fast routing table construction

using small messages: extended abstract. In Symposium on Theory of Com-

puting Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 381–

390, 2013.

[67] Christoph Lenzen and Boaz Patt-Shamir. Fast partial distance estimation

and applications. In ACM Symposium on Principles of Distributed Computing

(PODC), pages 153–162, 2015.

[68] Christoph Lenzen and David Peleg. Efficient distributed source detection

with limited bandwidth. In ACM Symposium on Principles of Distributed

Computing, PODC ’13, Montreal, QC, Canada, July 22-24, 2013, pages 375–

382, 2013.

[69] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-

weight spanning tree construction in O(log log n) communication rounds.

SIAM J. Comput., 35(1):120–131, 2005.

[70] Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed MST for con-

stant diameter graphs. In 20th ACM Symposium on Principles of Distributed

Computing (PODC), pages 63–71, 2001.

[71] Michael Mitzenmacher and Eli Upfal. Probability and computing - random-

ized algorithms and probabilistic analysis. Cambridge University Press, 2005.

100 Bibliography

[72] Burkhard Monien. How to find long paths efficiently. In Analysis and design

of algorithms for combinatorial problems, volume 109 of North-Holland Math.

Stud., pages 239–254. North-Holland, Amsterdam, 1985.

[73] Danupon Nanongkai. Distributed approximation algorithms for weighted

shortest paths. In ACM Symposium on Theory of Computing (STOC), pages

565–573, 2014.

[74] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM

J. Comput., 24(6):1259–1277, 1995.

[75] Noam Nisan and Avi Wigderson. Rounds in communication complexity

revisited. SIAM J. Comput., 22(1):211–219, 1993.

[76] Dennis Olivetti. How bandwidth affects the CONGEST model. CoRR,

abs/1704.06092, 2017.

[77] Hiroaki Ookawa and Taisuke Izumi. Filling logarithmic gaps in distributed

complexity for global problems. In 41st International Conference on Current

Trends in Theory and Practice of Computer Science (SOFSEM), volume 8939 of

LNCS, pages 377–388. Springer, 2015.

[78] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. A time-

and message-optimal distributed algorithm for minimum spanning trees.

CoRR, abs/1607.06883, 2016.

[79] Judea Pearl. Fusion, propagation, and structuring in belief networks. Artif.

Intell., 29(3):241–288, 1986.

[80] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM,

2000.

[81] David Peleg, Liam Roditty, and Elad Tal. Distributed algorithms for net-

work diameter and girth. In Automata, Languages, and Programming - 39th

International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceed-

ings, Part II, pages 660–672, 2012.

[82] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time

complexity of distributed minimum-weight spanning tree construction.

SIAM J. Comput., 30(5):1427–1442, 2000.

Bibliography 101

[83] Ron Shamir and Dekel Tsur. Faster subtree isomorphism. J. Algorithms,

33(2):267–280, 1999.

[84] Julian R. Ullmann. An algorithm for subgraph isomorphism. J. ACM,

23(1):31–42, 1976.

	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Setting
	1.2 Subgraph Detection
	1.3 Tradeoffs Between Bandwidth and Time
	1.4 Clique Emulation
	1.5 Minimum Spanning Tree Construction

	2 Model and Definitions
	2.1 The congest Model
	2.2 The Congested Clique
	2.3 Property Testing
	2.4 Distributed Property Testing
	2.5 Core-Periphery Networks
	2.6 Minimum Spanning Tree
	2.7 Single Source Shortest Path
	2.8 All Pairs Shortest Paths

	3 Subgraph Detection
	3.1 Introduction
	3.2 Our Goal
	3.3 Results
	3.4 Detecting the Presence of Trees
	3.5 Distributed Property Testing
	3.6 Conclusions

	4 Tradeoffs Between Bandwidth and Time
	4.1 Introduction
	4.2 Our Goal
	4.3 Results
	4.4 All Pairs Shortest Paths
	4.5 Minimum Spanning Tree
	4.6 Single Source Shortest Path
	4.7 Distancek
	4.8 Conclusions

	5 Clique Emulation
	5.1 Introduction
	5.2 Our Goal
	5.3 Results
	5.4 Related Work
	5.5 Deterministic Construction
	5.6 Randomized Construction
	5.7 Conclusions

	6 MST In Core-Periphery Networks
	6.1 Introduction
	6.2 Results
	6.3 MST Construction
	6.4 Conclusions

	7 Conclusions and Open Problems

