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ABSTRACT

We propose a routing scheme to implement multicast communica-
tion in wireless networks. The scheme is oblivious, compact, and
completely decentralized. It is intended to support dynamic and di-
verse multicast requests typical of, for example, publish/subscribe
and content-based communication. The scheme is built on top of a
geographical routing layer. Each message is transmitted along the
geometric minimum spanning tree that connects the source and all
the destinations. Then, for each edge in this tree, the scheme routes
a message through a random intermediate node, chosen indepen-
dently of the set of multicast requests. The intermediate node is
chosen in the vicinity of the corresponding edge such that conges-
tion is reduced without stretching the routes by more than a con-
stant factor. We first evaluate the scheme analytically, showing that
it achieves a theoretically optimal level of congestion. We then
evaluate the scheme in simulation, showing that its performance is
also good in practice.

Categories and Subject Descriptors:

C.2.2 [Computer-Communication Networks]:
Network Protocols–routing protocols

F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—routing and layout

General Terms: Algorithms, Performance

Keywords: geographic routing, multicast, congestion, stretch

1. INTRODUCTION
Some modes of communication are inherently multicast, in the

sense that they induce the transmission of a single message to mul-
tiple destinations. This is the case of publish/subscribe communi-
cation, where each message is transmitted from the sender (the pub-
lisher) to the set of receivers that are interested in that message (the
subscribers). Furthermore, while some multicast services are based
on a few and relatively stable multicast groups (e.g., video stream-
ing over IP multicast) and therefore work well with stable routing
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state, others are more demanding and more dynamic. For exam-
ple, in content-based publish/subscribe, subscriptions may partially
overlap, forming a large number of implicit groups—potentially, a
different one for each message.

In this paper we consider a generic multicast primitive in which
each message may induce a unique multicast request (m, s, T ).
This primitive allows a source node s to send a message m to a set
of target nodes T . In particular, we consider this primitive within
a wireless network. Our goal is to implement such a communica-
tion primitive through a routing scheme that is oblivious, compact,
low-stretch, low-congestion, and also practical.

The scheme we propose is oblivious in the sense that how a re-
quest is routed does not depend on the set of requests and how the
other requests are routed. We in fact prove that the scheme offers
the best possible performance guarantees even in the presence of
adversarial requests. The scheme is compact in the sense that it re-
quires only limited state at each node, typically O(polylog n) bits
in a network of n nodes. The scheme is low-stretch, in the sense
that the length of each path from a source to a target node, which
roughly corresponds to the latency of each delivery, is optimal up
to a small constant factor. The scheme is also low-congestion, in
the sense that, for any given set of multicast requests, the maximum
amount of traffic crossing a node is only a factor of O(log n) worse
than with an ideal routing specifically optimized for that set of re-
quests. Notice that this O(log n) factor for congestion is optimal
for any oblivious scheme [5, 20], even for routing on 2-dimensional
meshes. Lastly, the scheme is practical in the sense that the theoret-
ical asymptotic behavior of the scheme can be realized in practice
with good pre-asymptotic performance and small constants.

The scheme we propose is built on top of a geographical rout-
ing service whereby a message can be addressed to a given geo-
graphical location and therefore can be delivered, possibly through
multiple hops, to the node that is closest to that location. Such ge-
ographical schemes exist and are compact and achieve low-stretch
both theoretically and in practice [17]. The choice of a geograph-
ical communication primitive implies that, in its most basic form,
the routing scheme we propose is name dependent. This means that
nodes must be identified by some kind of address dictated by the
communication layer (in this case, the node’s geographic coordi-
nates). However, it is also possible to extend such a basic routing
scheme to be name independent, by means of a lookup service that
can also be implemented efficiently [1].

In summary, we start from a compact and low-stretch geograph-
ical routing substrate, which for a request (m, s, t) can deliver a
unicast message m from a source s to a target destination t, and we
use it to build a low-congestion oblivious multicast scheme that can
serve requests of the type (m,s, T ) and deliver m from a source s
to a set of target destinations T . A simple way to implement such



a multicast scheme would be to implement each multicast request
(m, s, T ) with a series of unicast requests (m, s, ti) for each ti in
T . However, such a scheme incurs high congestion. Intuitively,
this is the case when many destinations are close to each other,
even without adversarial sets of requests and instead with sources
and destinations distributed uniformly over multiple requests.

A standard way to achieve low congestion with an oblivious uni-
cast scheme is to use randomization in what is known as Valiant’s
trick [29]. For a unicast request (m, s, t), first route m from s to
a randomly chosen intermediate destination v, and then from v to
t. However, in its basic form, this trick does not work well for
arbitrary worst-case sets of requests and in particular it does not
work well for multicast requests. Consider for example a request
(m, s, T ) in which the targets ti ∈ T are all clustered in a small re-
gion far away from the source s. Even with Valiant’s trick, a series
of (unicast) copies of m going from s to a target ti in the clus-
ter would induce high congestion in the small perimeter around the
cluster, whereas an optimal routing strategy in that case would send
one copy of m from s towards the cluster, and then it would dupli-
cate m locally to all targets within the cluster.

The scheme we propose employs a local variant of Valiant’s
trick, and it does that within a routing strategy that avoids conges-
tion in the case of multicast requests. At a high level, the scheme
routes a multicast request (m,s, T ) along the geometric minimum
spanning tree that connects the source s and all the targets in T .
Then, for each edge (u, v) on that tree, the scheme uses a variant
of Valiant’s trick by routing m from u to an intermediate point wuv

chosen randomly in the vicinity of the uv segment.
In this paper we formally define this routing scheme, we then

analyze its theoretical properties, and evaluate it in practice using
simulation. The theoretical analysis shows that, in terms of con-
gestion, the scheme is competitive with an ideal (non-oblivious)
scheme up to a factor of O(log n), which is known to be a lower
bound for congestion in oblivious schemes. The simulation study
shows that the scheme is also effective in practice, with limited
congestion and stretch.

2. RELATED WORK
Compared to classic wired networks, wireless ad hoc and sensor

networks behave more dynamically. As a consequence, classical
link-state routing protocols are often not well-suited for wireless
networks and other, more reactive routing strategies are required.
A standard way to do this is to combine flooding for route discov-
ery with some caching techniques to reuse acquired routing infor-
mation [7, 12, 22, 26]. While there is an abundant literature on
wireless point-to-point routing, the work on wireless multicast is
much less copious. In fact, Vershney claims that wireless multi-
cast is still an important challenge [30]. Multicast protocols for
wireless networks have been suggested, for example, by Royer and
Perkins [27] or by Xie et al. [31].

Since the presence of wireless communication links is inherently
related to the physical placement of nodes, if available, geometric
information can be a powerful tool for routing. For geographic
routing, it is typically assumed that all nodes are aware of their ge-
ographical position and the source node of a message knows the lo-
cation of the destination. The simplest possible way to route a mes-
sage that way is to proceed greedily by always forwarding a mes-
sage to the neighbor closest to the destination [28]. While greedy
routing is efficient in dense average-case scenarios, it might not al-
ways reach the destination. The first proposed geographic routing
protocol that is guaranteed to reach the destination is face rout-
ing [15]. The delivery guarantees of the face routing protocol come
at the cost of worse behavior in well-behaved settings. Therefore

greedy and face routing have been combined to obtain average-case
efficient protocols with guaranteed message delivery [6, 13, 17].
All these geographic routing protocols assume that the communi-
cation network is a unit disk graph. In this paper, we extend this
setting with non-uniform transmission ranges in a model similar to
those proposed by others [4, 16].

To apply geographic routing, the source node of a message needs
to know the location of the destination. A typical application is
geocast, a variant of multicast, where all nodes in a certain geo-
graphical region have to be reached [21]. If location information
of the destination is not available, geographic routing can be com-
bined with a location service that allows to efficiently search for
location information of other nodes [1, 10, 19].

All routing schemes described so far do not explicitly attempt
to minimize the congestion that arises in the presence of a large
number of routing requests. From an algorithmic point of view,
congestion has mainly been considered in the context of oblivious
routing, i.e., if each routing path is chosen independently. A sem-
inal result by Valiant and Brebner [29] shows that in a hypercube,
any permutation can be routed in O(log n) steps. The path selec-
tion is randomized and uses what is now known as Valiant’s trick.
Each message is first routed to a random intermediate node and
from there to the destination. The technique has been applied in
various other networks and in particular, it was shown by Kolman
and Scheideler [14] that Valiant’s trick can efficiently be used in a
much more general setting. The existing work on oblivious rout-
ing culminated in a breakthrough paper by Räcke [24] that shows
that there is an oblivious protocol that routes every set of routing
requests with expected maximum node congestion within a loga-
rithmic factor of the best corresponding multicommodity flow so-
lution. In light of a lower bound that even holds for 2-dimensional
meshes, this is asymptotically optimal [5, 20]. Räcke’s result also
applies to multicast and could also be used for our wireless net-
work model. However, the protocol state is rather heavy-weight to
set up and maintain, and the given wireless setting is amenable to
specialized and much more light-weight algorithms. Most closely
related to our work are two papers by Busch et al. that describe al-
gorithms for unicast in 2-dimensional meshes [9] and for geometric
networks modeling dense wireless networks [8]. For unicast, this
latter algorithm [8] achieves the same asymptotic bounds as the al-
gorithm presented here. However, we believe that our randomized
scheme based on Valiant’s trick is somewhat simpler and easier to
use. A recent survey on oblivious routing is also due to Räcke [25].
Other papers study congestion in the context of wireless network
routing, but are less related to this work [11, 18, 23, 32].

3. MODEL AND DEFINITIONS
We now formally state our assumptions about the communica-

tion network and its underlying geographic routing service.

Communication Network: We assume that n wireless network
nodes are located in a bounded region in 2-dimensional Euclidean
space. The nodes have unique identifiers and we denote the set of
nodes by V . For simplicity, we assume that the region is a square of
side length L, however, the techniques work for any “reasonable”
convex region. Further, we assume that nodes are aware of their
position in the plane. This can be achieved by equipping nodes
with GPS devices or through some localization service. Commu-
nication in the network is characterized by two positive parameters
rC ≤ rI defining communication and interference radii. When-
ever two nodes u and v are at Euclidean distance at most rC , u
and v can directly communicate with each other. If two nodes u
and v are within distance rI , they can cause interference to each



other. Further, we assume that there is no direct communication
or even interference between two nodes at distance more than rI .
We denote the ratio between rI and rC by ρ := rI/rC and typ-
ically assume ρ to be a constant (independent of n). We assume
that the L×L-square containing the network is reasonably densely
covered by nodes. Specifically, we assume that there is a param-
eter rcov such that for every point in the L × L-square, there is a
network node within distance rcov . We assume rcov is relatively
small, such that the requirement implies that the number of nodes
is at least polynomial in L/rI .

Geographic Routing: We assume that there is a geographic rout-
ing service in place, which nodes use for communicating with each
other. More formally, a node u can send a message to an arbitrary
(x, y) coordinate pair within the specified geometric region that
contains the wireless network nodes (i.e., the side length L square).
If a message is sent to (x, y), the routing service guarantees that the
node closest to (x, y) (according to Euclidean distance) receives the
message. We assume that nodes populate the complete given geo-
metric region densely enough to enable routing on almost direct
paths between all pairs of nodes. We use the following definitions:

DEFINITION 3.1 (λ-PADDED PATH).
A path P = u1, . . . , uk connecting coordinates (x, y) and (x′, y′)
is λ-padded if all nodes ui of P are within Euclidean distance at

most λ · rI from the line segment connecting (x, y) and (x′, y′) in
the plane.

DEFINITION 3.2 (σ-SPARSE PATH).
A path P = u1, . . . , uk is called σ-sparse if no disk of diameter

rC contains more than σ nodes ui of P .

We assume the geographic routing service induces λpad-padded,
σ-sparse paths for some positive parameters λpad and σ. Note
that this in particular implies that the node distribution is dense
enough so that there is a node at distance at most λpadrI from ev-
ery point (x, y) in the geometric region covered by the network,
i.e., rcov ≤ λpadrI . Further note that the assumption that any two
nodes within distance rC are connected implies that nodes inside a
disk of diameter rC are fully connected and therefore, paths con-
taining more than 2 nodes in such a disk can be shortened to contain
at most 2 such nodes. Hence, if a λpad-padded path between (x, y)
and (x′, y′) exists, then there is also a λpad-padded, 2-sparse path
between the two points.

Typically, for relatively dense average-case networks, services
based on greedy routing perform best. By construction, greedy
routing always gives 2-sparse paths. Further, as shown in Section 7,
it also gives good, O(1)-padded paths. For worst-case networks,
geographic routing techniques [16, 17] can be used to find an O(1)-
sparse, O(λ)-padded path, whenever a λ-padded path exists.

4. PROBLEM STATEMENT

Multicast Routing: We consider two variants of the multicast
problem. A lower level geographic and a high-level name-based
variant. In both cases, we are given r multicast requests R1, . . . , Rr

where request Ri = (mi, si, Ti) consists of a message mi, a source
node si and a set Ti of ki destinations ti,1, . . . , ti,ki

. We assume
that si knows mi and Ti and the objective is for si to send mi to all
destinations in Ti. In the case of the geographic multicast problem,
each destination ti.j is given as a coordinate pair (xi,j , yi,j) and
for all i ∈ [r], message mi has to be sent to the ki actual network
nodes closest to (xi,1, yi,1), . . . , (xi,ki

, yi,ki
). In the more stan-

dard name-based multicast problem, each destination ti,j is given

as a node identifier. As usual in the context, we assume that mes-
sages mi are large compared to the size of Ti, so that the overhead
of storing all destination information in the message header is neg-
ligible [2]. The geographic multicast problem is closely related to
what is generally known as geocast [21]. Unlike specifying indi-
vidual destinations, typically, the destinations are given by a geo-
graphic region to which a message has to be transmitted. We note
that the geographic multicast service that we present can easily be
adapted to efficiently work in such a scenario. In fact, in our com-
munication model, sending to a geographic region can be modeled
by sending to a dense enough set of destinations within the area.

Congestion: As discussed in Section 3, we assume that nodes at
distance at most rI can cause interference to each other. To model
congestion, we assume that whenever a node u transmits, it causes
interference at all nodes within distance rI from u. Let Iu be the
set of nodes within Euclidean distance rI from node u. Hence,
whenever a node in Iu sends a message, it causes interference at
node u and vice versa, whenever u transmits a message, it interferes
with all nodes in Iu.

To satisfy a given multicast request Ri = (mi, si, Ti), message
mi has to be sent from si to all nodes in Ti along a subtree of the
network. Given some algorithm A, let SA

i be the multiset of nodes
that transmit message mi in order to reach all destinations in Ti,
i.e., SA

i at least contains all the inner nodes of the tree along which
mi is sent to the destinations. Given a set of r multicast requests
R1, . . . , Rr and an algorithm A, we define the congestion congAu
of a node u and the maximum node congestion congA of A as

cong
A
u :=

r
∑

i=1

|SA
i ∩ Iu|, cong

A := max
u∈V

cong
A
u . (1)

Our main objective will be to minimize congA. Whenever it is clear
from the context, we omit the superscript A. In order to evaluate
an algorithm, we intend to compare its behavior with the best pos-
sible maximum node congestion. Let cong⋆ be the maximum node
congestion of an optimal routing solution for the given requests
R1, . . . , Rr . Consider a rectangle R with side lengths w(R) and
h(R). We define cut(R) to be the set of requests Ri, i ∈ [r]
such that {si} ∪ Ti contains at least one node inside R and at least
one node outside R. To bound the optimal congestion cong⋆, we
introduce the following notion:

load(R) := min

{

|cut(R)|,
∣

∣cut(R)
∣

∣ · rI
w(R) + h(R)

}

. (2)

The following lemma shows that asymptotically, load(R) is a lower
bound on the best possible maximum congestion cong⋆.

LEMMA 4.1. For every set of multicast requests R1, . . . , Rr

and every rectangle R, we have cong⋆ = Ω
(

load(R)
)

.

PROOF. Consider a multicast request Ri for which {si} ∪ Ti

contains at least one node inside R and at least one node outside
R. Further, let B be the geometric area defined by all points within
distance rI of the boundary of R. In order to satisfy request Ri, a
message has to be sent into or out of R and therefore at least one
node in B has to transmit a message.

Consider a maximal independent set S of the graph defined by
the nodes VB that lie inside B and edges {u, v} whenever u an v
are at Euclidean distance at most rI . Whenever a node in B trans-
mits a message, it causes congestion at some node in S. Further,
since nodes in S are within distance more than rI , the number of
nodes in S is at most O

(

1 + (w(R) + h(R))/rI
)

. Hence, by
the pigeonhole principle, for every solution for the given multicast
problem, some node in S has congestion at least Ω(load(R)).
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5. GEOMETRIC MULTICAST
Our algorithm consists of two components, which together allow

to multicast a message to a set of geographical destinations based
on an underlying geographic routing service as discussed in Sec-
tion 3. At the core is an oblivious geographic point-to-point rout-
ing protocol with asymptotically optimal congestion properties. A
multicast request is then routed on a tree by applying the point-to-
point scheme.

We first describe the routing scheme to send a message from
a node u to a geographical destination (x, y). The point-to-point
routing algorithm is based on Valiant’s classical trick of reducing
overall congestion by routing messages through a randomly chosen
intermediate node. To deal with worst-case collections of routing
requests and to guarantee a bounded stretch factor for the routing
paths, we choose the random intermediate point dependent on the
source and target positions of the routing request. Specifically, a
message from a node u at position (xu, yu) to location (x, y) is
routed as follows.

1. If the Euclidean distance of (x, y) from (xu, yu) is at most
rC/2, the node closest to (x, y) is either u itself or a neighbor
v of u. In that case, u directly sends the message to v.

2. Otherwise, node u chooses a random intermediate position
(xr, yr) as follows. First, u chooses two uniform random
angles α, β ∈ [0, π/3]. The point (xr, yr) is then chosen
such that the line segments from u to (xr, yr) and from u
to the destination position (x, y) enclose an angle of α and
the line segments from (x, y) to (xr, yr) and from (x, y) to
u enclose an angle of β. There are two points (xr, yr) for
which this is true (one to the left and one to the right of the
line connecting source and destination). Node u randomly
chooses one of the two points as (xr, yr).

Using the underlying geographic routing protocol, the mes-
sage is then routed from u to the node w closest to (xr, yr)
and afterward from node w to the destination position (x, y).

The choice of the random point (xr, yr) is also illustrated in Fig-
ure 1. Note that (xr, yr) is chosen such that the geometric distances
from (xr, yr) to u and (x, y) are at most as large as the distance
between u and (x, y).

Based on the described scheme for point-to-point communica-
tion, we can now build the multicast routing protocol on top of
it. For a given geographic mulitcast request Ri = (mi, si, Ti),
let (xi, yi) be the position of the source node si and let Pi =

{(xi, yi)} ∪ Ti be the set of points of the multicast request Ri.
We first construct a geometric tree spanning all the points in Pi

and then use the point-to-point routing algorithm to send mi along
all the edges of the constructed spanning tree. There are different
ways to choose the geometric spanning tree of the points in Pi.
In terms of total routing cost, the best choice would be to choose
a minimum Steiner tree w.r.t. Euclidean distances. Note that the
Euclidean Steiner tree problem is NP-hard. However, there is a
polynomial-time approximation scheme and thus the problem can
be approximated arbitrarily well [3]. Still, since we would like our
algorithm to be as simple as possible, and also since asymptoti-
cally it does not make a difference, we use the Euclidean minimum
spanning tree (MST) to connect the points in Pi. Such a tree can
be computed locally by the sender with an efficient algorithm.

The message mi is sent along the edges of the Euclidean MST of
Pi in a straightforward manner. The tree is directed from the source
si at (xi, yi) towards the destinations Ti and slightly adapted in the
following way. As long as there is a directed path u, v, w such that
the Euclidean distance between u and w is at most rC/2, node w
is attached directly to u instead of v. This allows to reach close-by
nodes by local broadcast where possible.

For each (directed) edge
(

(x, y), (x′, y′)
)

, a message is sent from
the node closest to (x, y) to the node closest to (x′, y′) by using
the point-to-point routing scheme described above. Assume that a
node w representing a node (x, y) in the tree needs to send mes-
sages to different neighbors (x′, y′) in the MST. If some of the
neighbors (x′, y′) are at distance at most rC/2 from the position
of w, w sends one broadcast message to all neighbors to reach the
nodes closest to these tree neighbors. For all other tree neighbors,
the message is sent by using the randomized point-to-point rout-
ing scheme, i.e., the message for each edge is routed via a random
intermediate point as described above.

5.1 Analysis
Recall that for the analysis, we assume that for every point in

the L × L-square containing the network, there is an actual node
within distance rcov . Further when routing from a node at point
(x, y) to a node at point (x′, y′), the underlying geographic routing
service generates λpad-padded, σ-sparse paths. For the analysis,
we require a technical lemma bounding the number of local long
edges of an MST in the Euclidean plane.

LEMMA 5.1. Let T be an EuclideanMST of a set of pointsX ⊆
R

2 and consider a circle C ⊆ R
2 of radius r. The number of edges

{p, q} of T of length at least 3r such that | {p, q} ∩ C| = 1 (i.e.,

edge {p, q} connects a point inside C with a point outside C) is at

most 7.

PROOF. Consider two edges {p, q} and {p′, q′} of length at
least 3r such that p, p′ ∈ C, q, q′ 6∈ C. Let c be the center of
the circle C and let θ be the angle that is enclosed by the rays cq
and cq′. Let dcq , dcq′ , and dqq′ be the Euclidean distances between
c and q, c and q′, as well as q and q′, respectively. By the law of
cosines, we have

cos θ =
d2cq + d2cq′ − d2qq′

2 · dcq · dcq′
. (3)

Our goal is to upper bound the above expression and therefore to
get a lower bound on the angle θ. Because the edges {p, q} and
{p′, q′} have length at least 3r and because p and p′ lie in the circle
C, it follows that

dcq ≥ 2r and dcq′ ≥ 2r. (4)



Since both p and p′ are inside C, their distance is at most 2r. Be-
cause {p, q} and {p′, q′} are edges of the MST T and because we
assume that their length is at least 3r, dqq′ has to be at least as large
as the length of the longer of the two edges {p, q} and {p′, q′}.
W.l.o.g., assume that dcq ≥ dcq′ . We then get

dqq′ ≥ max {3r, dcq − r} . (5)

We obtain an upper bound on cos θ by maximizing the right-hand
side of (3) subject to dcq ≥ dcq′ and Inequalities (4) and (5). For
fixed values of dcq and dqq′ , the r.h.s. of (3) is a concave function of
dcq′ and is thus maximized either for dcq′ = 2r or for dcq′ = dcq .

• dcq′ = 2r: In that case, the r.h.s. of (3) is monotonically
increasing in dcq and therefore maximized for dcq = dqq′ +
r. We then get

cos θ ≤ (2r)2 + 2rdqq′ + r2

4 · (rdqq′ + r2)
≤ 11

16
.

The second inequality follows from dqq′ ≥ 3r.

• dcq′ = dcq: In the second case, we get

cos θ = 1−
d2qq′

2d2cq
.

The above expression gets large if dqq′ is as small as possible
and dcq is as large as possible. It is maximized for dqq′ =
dcq − r = 3r, in which case we obtain

cos θ = 1− (3r)2

2(4r)2
=

23

32
.

Combining the two cases, we therefore get cos θ ≤ 11/16 which
implies that θ > 0.812 > 2π/8.

In the following, let Ti, 1 ≤ i ≤ r be the Euclidean MST
corresponding to multicast request Ri and let Ei be the directed
edges of Ti, where each edge is directed away from the source si
of Ri (i.e., in the direction in which a message has to be sent). Let
EMST =

⋃r

i=1 Ei be the set of all directed MST edges. For a

region A ⊆ R
2 in the plane, let Eր

MST(A) be the set of directed

edges (p, q) ∈ EMST for which p ∈ A and let Eւ
MST(A) be the

set of directed edges (p, q) ∈ EMST for which q ∈ A. For each
long enough edge (p, q) ∈ EMST, two messages are sent by us-
ing the underlying geographic routing service, one message from
p to a random intermediate destination and one message from the
intermediate destination to q. Let Mout(A) be the set of mes-
sages sent from p to the random intermediate destination for an
edge (p, q) ∈ Eր

MST(A). Further, let Min(A) be the set of mes-
sages sent from the random intermediate node to q for an edge
(p, q) ∈ Eւ

MST(A).

LEMMA 5.2. Consider a square S with side length s and let v
be a node at distance at least d ≥ 3s+2rcov+(λpad+1)rI from S.
The expected congestion at node v caused by messages inMin(S)
and Mout(S) is at most O

(

(λpad + 1) · σ · ρ2 · load(S)
)

.

PROOF. Let us first consider a message m ∈ Mout(S) corre-

sponding to some edge (p, q) ∈ Eր
MST(S). The message m is

sent from the node u closest to p to a random intermediate point
(xr, yr). Assume that the coordinates of u are (xu, yu). Because
p ∈ S, (xu, yu) is at distance at most rcov from S. Further, by
the way the random point (xr, yr) is chosen, the distance from u
to (xr, yr) is upper bounded by the distance from u to q.

Message m only causes congestion at node v if the underly-
ing geographic routing service sends the message through a node
within distance rI from v. Because we assume that the geographic
routing paths are λpad-padded, this can be the case if v is within
distance rI(1 + λpad) from the line segment connecting (xu, yu)
and (xr, yr). Consequently, because the distance from v to S is
at least 3s + 2rcov + (λpad + 1)rI , the distance between u and
(xr, yr) and therefore also the distance between u and q needs to
be at least 3s+ rcov . Because u is at distance at most rcov from S,
this implies that the edge (p, q) has length at least 3s.

Further, recall that the line from u to (xr, yr) is at a random
angle α ∈ [−π/3, π/3] from the line uq. Message m causes in-
terference at node v only when α is such that the line connecting u
and (xr, yr) passes within distance (λpad + 1)rI from v. Let β be
the angle between line uv and the line connecting u with (xr, yr).
The angle β is also a uniform random angle from some interval
[β0, β1] of length 2π/3. Message m can cause interference at v if
|β| ≤ π/2 and ℓ · sin β ≤ (λpad + 1)rI , where ℓ ≥ 3s is the
distance between u and v. Using | sin β| ≤ |β|, we get

|β| ≤ (λpad + 1)rI
ℓ

≤ (λpad + 1)rI
3s

.

Let Cm,v be the event that message m causes congestion at v. The
probability for this to happen is at most

P(Cm,v) ≤ 2(λpad + 1)rI)

3s
· 1

2π/3
=

(λpad + 1)rI
π · s . (6)

We define Xm,v to be the random variable that counts the amount
of congestion caused by m at v. Hence, Xm,v is the number of
nodes in the rI -neighborhood of v that transmit a message while
sending m from u to (xr, yr). Clearly Xm,v can only be pos-
itive if the event Cm,v occurs. In this case, the value of Xm,v

is at most O(σρ2) because we assume that the paths created by
the geographic routing service are σ-sparse and a disk of radius
rI can be covered with O(ρ2) disks of diameter rC . Let X =
∑

m∈Mout(S) Xm,v be the congestion at v caused by messages in

Mout(S). By linearity of expectation, we have

E[X] = O

(

(λpad + 1)rI
s

· σρ2 · |Mout(S)|
)

.

To bound E[X], it therefore remains to bound the number of mes-
sages inMout(S). We have seen that each message m ∈ Mout(S)
corresponds to some MST edge (p, q) of length at least 3s. Con-
sider the circle C of radius s/

√
2 that encloses the square S. Since

p ∈ S and q is at distance at least 3s, we have p ∈ C and q 6∈ C.
Hence, by Lemma 5.1, for each MST, there are at most 7 such
edges of length at least 3s/

√
2 < 3s. Only multicast requests that

contribute to load(S) can have MST edges with one node inside S
and one node outside S. Further, for every such multicast request
there are at most 7 edges in Mout(S). The expected congestion at
v created by nodes in Mout(S) can therefore be upper bounded as

E[X] = O
(

(λpad + 1) · σ · ρ2 · load(S)
)

. (7)

The situation for the messages in Min(S) is almost symmetric.
The messages are sent from the random intermediate destination
(xr, yr) to a position inside S. However, the actual node sending
the message might be at distance rcov from (xr, yr), therefore we
must accordingly adjust the angles for which there is congestion
at node v. Instead of the value obtained in (6), the probability of

Cm,v can now be upper bounded by P(Cm,v) ≤ rcov+(λpad+1)rI
π·s

.
Because rcov ≤ λpadrI , this does not change anything asymptot-
ically, and the congestion from messages in Min(S) can also be



upper bounded by the value given in (7). The claim of the lemma
therefore follows Lemma 4.1.

We are now ready to prove the main theorem of this section,
showing that the expected maximal congestion induced by our ge-
ographic multicast algorithm is within a logarithmic factor of the
optimal and therefore asymptotically best possible for any oblivi-
ous algorithm [5, 20].

THEOREM 5.3. When using the described geographic multicast

algorithm to route a given set of geometric multicast requests, the

expected congestion at any node v is at most

O
((

(λpad + 1) · log n+ λ2
pad

)

· σρ2 · cong⋆
)

.

PROOF. The multicast algorithm described at the beginning of
Section 5 sends two kinds of messages. Most messages are mes-
sages sent through the underlying geographic routing layer. In ad-
dition, messages to local neighbors are sent by direct local broad-
cast. Node v can be affected by local broadcast messages only if
they are sent by nodes within distance rI from v. By adapting the
MST structure and contracting paths of total length at most rC/2,
it is guaranteed that for each multicast request the number of local
broadcast messages in each rC -neighborhood is O(1). Such mes-
sages must be sent by a node within range rC . Hence, the total
congestion at nodes within distance rI + rC of v has to be within
a constant factor of the congestion caused by local broadcast mes-
sages at v. Hence, for every multicast solution, there must be some
node w close to v with congestion at least a constant times the con-
gestion caused by local broadcast messages at v.

Let us therefore consider the congestion caused by messages that
are sent through the underlying geographic routing layer. Note that
all these messages correspond to an MST edge of length at least
rC/2 and they all either go from an MST node to a random inter-
mediate destination or from a random intermediate destination to
an MST node. We partition the L × L-square containing the net-
work into two parts, an area containing nodes close to v and an area
with nodes far away from v. Specifically, we consider a square Q
of side length 6rcov + 3(λpad +1)rI = O

(

(λpad +1)rI
)

and the

area Q outside Q.
The area Q can be covered with O

(

logL/((λpad + 1)rI)
)

=
O(log L/rI) squares Si of side length si such that the distance
of square Si to v is at least 3s + 2rcov + (λpad + 1)rI as fol-
lows. The area right around Q is covered with O(1) squares of
side length at most

(

2rcov +(λpad+1)rI
)

/3 such that Q together
with these squares cover a larger square around v. The additional
squares can be iteratively placed in the same way around the grow-
ing center square such that side length of the squares grows expo-
nentially with the number of layers. By Lemma 5.2, for each of
the squares Si covering Q, the expected congestion from messages
in Mout(Si) and Min(Si) is at most O

(

(λpad + 1)σρ2cong⋆
)

.
Hence, the expected congestion from messages sent from a node
in Q to a random intermediate destination and from messages sent
from a random intermediate destination to a node in Q is at most

O
(

(λpad + 1) · σρ2 · log n
)

· cong⋆. (8)

Recall that we assume rcov is small enough and thus the node den-
sity is large enough such that n is at least polynomial in L/rI and
thus log(L/rI) = O(log n).

To prove the lemma, it remains to bound the congestion from
messages sent from a node in Q to a random intermediate desti-
nation or from a random intermediate destination to a node in Q.
Let M be the set of such messages. Because we assume that the
geographic routing service produces σ-sparse paths and because

the rI -neighborhood of v can be covered by O(ρ2) disks of di-
ameter rC , the congestion from each message in M is at most
O(σρ2). Hence, the congestion at v from messages in M is at
most O(|M |σρ2).

Every message in M corresponds to an MST edge of length more
than rC/2 and there are at most 2 messages in M for each such
MST edge. Further, for a particular multicast request, the number
of MST edges of length more than rC/2 with one node in Q is lin-
ear in the number of nodes in Q and at pairwise distance more than
rC/2. Hence, to serve all destinations in Q, in an optimal multicast
protocol, nodes in Q or within distance rC of Q need to transmit at
least Ω(|M |) times. The square Q and its rC -neighborhood can be
covered with O

(

(λpad + 1)2
)

disks of diameter rI . Each message
that is transmitted by a node inside this area causes congestion at
all nodes in at least one of these diameter rI disks. Hence, by the
pigeonhole principle, some node in Q or its rI -neighborhood has
congestion at least Ω

(

|M |/(λpad + 1)2
)

. Thus, the congestion at
v caused by messages in M can be upper bounded by

O
((

λ2
pad + 1

)

· σ · ρ2 · cong⋆
)

. (9)

Since the congestion caused by local broadcast messages is within
a constant factor of the optimal congestion, (8) and (9) together
imply the claim of the theorem.

Remarks: If the ratio ρ = rI/rC and the parameters λpad and
σ specifying the quality of the underlying geographic routing ser-
vice are constants independent of n, the statement of the theorem
simplifies. The theorem shows that in this case, the maximal ex-
pected node congestion of our multicast algorithm is within a fac-
tor O(log n) of the optimal maximum node congestion. Note that
it is well known that this is the best achievable bound for oblivi-
ous routing. Further, since congestion contributions from different
multicast requests are independent, a standard Chernoff argument
shows that the bound of Theorem 5.3 does not only hold in ex-
pectation, but also with high probability. Finally, we would like to
point out that within the quality guaranteed by the underlying rout-
ing layer, our multicast protocol produces routing paths and trees
that are within a constant factor of the optimal.

6. NAME-BASED MULTICAST
The multicast protocol discussed in Section 5 allows to efficiently

(in terms of congestion and stretch) multicast messages if the source
node of a multicast request knows the positions of all the destina-
tions. In many cases, information about the positions of destina-
tions is not available to the node disseminating some information.
In this case, a geographic routing service can be used in conjunc-
tion with a location service that allows to query the positions of
nodes [1, 10, 19]. In the following, we sketch how to apply the lo-
cation service LLS [1] to our context, and we show that, if for each
multicast request the destination positions can be obtained with a
small number of queries to the location service, then the expected
maximal congestion of looking up the destination coordinates is
within a constant factor of the expected maximal congestion in-
curred by multicasting the messages.

Let us first briefly discuss how LLS works. We describe the most
basic variant of the scheme. (The authors also present a more in-
volved scheme that takes into account update costs when nodes are
moving [1].) LLS is essentially a geometric, distributed hash table.
Assume that we want to store the location information for node v
with identifier idv . We assume that there is a hash function h that
assigns a coordinate h(idv) =

(

hx(idv), hy(idv)
)

in the L × L-
square to each node v. Using the position h(idv), we define a hier-
archical tiling of the plane into squares of exponentially decreasing



sizes. The corners of the squares of level ℓ = 0, 1, 2, . . . of the
tiling are at positions

(

hx(idv)+ i ·L/2ℓ, hy(idv) + j ·L/2ℓ
)

for
integers i, j ∈ Z. On every level ℓ, the position information of v is
stored at the four corners of the tile that contains v. Starting from
the position of v in order of decreasing levels, v’s information is
stored in a spiral-like fashion.

To look up the coordinate information for some node v with iden-
tifier idv , the protocol searches in the same spiral-like fashion. As-
sume that node u searches for v’s position information. For each
level ℓ, node u queries the four corners of the tile containing u in
the tiling defined by h(idv). The search is done in the order of de-
creasing ℓ, i.e., by going from small tiles to large tiles, which forms
a spiral that is shown to hit a node that stores the information about
v with asymptotically optimal cost [1]. The following is a list of
the most important properties of the scheme for our purposes:

1. If a node u looks up the information of some node v, the
distance that has to be traversed for the search is proportional
to the Euclidean distance of u and v.

2. A search for node v starting at node u follows an expo-
nentially growing spiral. The exact paths visited during the
search are determined by the position h(idv). Assuming that
the hash function h(idv) leads to a uniformly distributed po-
sition for the origin of the coordinate system defining the
tiling, it can be shown that a search from node u causes inter-
ference at a node at distance d with probability proportional
to (λpad + 1)rI/d. Here, we assume that the search mes-
sages are sent through the geographic routing layer described
in Section 3.

3. Assuming that the distribution of nodes is sufficiently dense,
the scheme is compact. Each node only needs to store the
position information of a logarithmic number of other nodes.

The next theorem shows that if at most κ look-ups are necessary
for each multicast request, the expected look-up cost is asymp-
totically upper bounded by the expected cost for multicasting all
message using our algorithm using the geometric protocol of Sec-
tion 5. For the theorem, we assume that the hash function h leads to
uniformly distributed positions h(idv) that are independent of the
given multicast requests. Due to lack of space, we only give a very
rough sketch of the proof of the theorem.

THEOREM 6.1. If each multicast request requires to look up at

most κ positions, at every node v, the expected congestion caused

by all look-ups is at most

O
(

κ ·
(

(λpad + 1) · log n+ λ2
pad

)

· σρ2 · cong⋆
)

.

PROOF SKETCH. The proof follows a similar reasoning to the
one in Lemma 5.2 and Theorem 5.3, where the congestion of the
geometric multicast algorithm is analyzed. According to the first
property of LLS listed above, a search from a node u for a node
v stays within distance O(d(u, v)) of u, where d(u, v) is the Eu-
clidean distance between u and v. Let us therefore assume that all
the κ searches of the source si of some multicast request Ri stay
within distance c · d(si, ti), where ti is the destination of request
Ri that is farthest away from si.

Let us first consider the congestion at v caused by multicast
requests with a source node that is relatively far away from v.
Consider a square Q of side length d that is at distance at least
2c · d + (λpad + 1)rI from v. Assume that the source node si of
multicast request Ri is inside Q. For a search of si to contribute to
the congestion at node v, the farthest destination of Ri needs to be
at least at distance 2d from si. Hence, Ri is a multicast request that

has the source node in Q and at least one destination node outside
Q and Ri therefore contributes to load(Q) of Q. By the second
property of LLS described above, the probability that a search of si
causes congestion at v is at most O((λpad +1)rI/d) and therefore
by a similar argument as in the proof of Lemma 5.2, the expected
total congestion at v from searches of source nodes in Q can be
upper bounded by

O
(

κ · (λpad + 1) · σ · ρ2 · load(Q)
)

.

By Lemma 4.1, this is within a factor O
(

κ(λpad + 1)σρ2
)

of
the optimal maximal node congestion. As in the proof of The-
orem 5.3, the congestion caused by source nodes at distance at
least 3(λpad + 1)rI from v can be bounded by O(log n) times
the above value because that part of the network can be covered
with O(log n) squares to which the above argument can be applied.
Also for the congestion from searches of sources within distance
3(λpad + 1)rI from v, a similar argument to the one in the proof
of Theorem 5.3 can be applied. Together, the bounds imply the
statement of the theorem.

7. SIMULATION ANALYSIS
We now evaluate our routing scheme through simulation. This

experimental analysis is intended to assess the performance of the
scheme in practice, and also to characterize the effects of specific
variants and parameters of the scheme itself as well as of the un-
derlying geographical routing service. We consider three high-level
research questions: (1) How does the scheme perform with various
underlying routing algorithms? (2) How does the scheme perform
with various selections of the random intermediate point? (3) How
does the scheme perform in general under various workloads?

We first describe the implementation of the scheme and the un-
derlying routing, and then present the simulation analysis.

7.1 Variants of the Routing Algorithms
We implemented two variants of the selection of the random in-

termediate point. The first variant corresponds exactly to the al-
gorithm we describe and analyze formally in Section 5 and that is
illustrated in Figure 1. This variant is parametrized by the range
from which the source chooses the two random angles α and β that
determine the intermediate point (xr, yr). In particular, we ana-
lyze the scheme when α and β are chosen uniformly in the ranges
[0, π/3], [0, π/4], and [0, π/6]. Intuitively, wider angles would
disperse traffic and therefore reduce congestion, at the expense of
slightly longer paths and therefore worse total traffic.

u

(x, y)

d

(xr, yr)

γd

α

α ∈ [−π
2
, π
2
]

Figure 2: Alternative Selection of Intermediate Node

The second variant, illustrated in Figure 2, is a bit different: u
selects an intermediate point (xr, yr) uniformly on a circular arc
with center in u and radius γ · d(u, (x, y)), where γ is a parameter
of this method, and is between 0 and 2.
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Figure 3: Examples of the Three Classes of Workloads

We also tested our scheme with various underlying routing algo-
rithms. Recall that the geographical routing layer sends a message
from a source node u to the node closest to the destination (x, y).
The algorithms we considered are:

Grd Greedy routing. Each node v forwards the message to the
next-hop neighbor w that is the closest to the destination
(x, y).

GSP Geometric shortest path. The path between u and (x, y) is
minimal in terms of geometric length.

DSP Hop-count (or “Dijkstra”) shortest path. The path between u
and (x, y) is minimal in terms of number of hops.

GrdRnd1 A randomized variant of greedy routing. In this case a
node v forwards a message to a next-hop neighbor w chosen
uniformly among the ones that advance towards the destina-
tion by at least half of the communication radius rC .

GrdRnd2 Another randomized variant of greedy routing. A node
v forwards a message to a next-hop neighbor w chosen uni-
formly among the ones that are within half of the communi-
cation radius rC from neighbor w, which is the closest to the
destination.

7.2 Experimental Setup and Parameters

Network: We simulate a network of 80000 nodes spread uni-
formly over a square area of 100 × 100 units of length. (We also
experimented with lower densities, obtaining consistent results that
we do not report here for lack of space.) We set the communica-
tion radius to be equal to the interference radius (rC = rI ) and we
run simulations with rC = 1 and rC = 2 units of length. These
settings correspond to a network that is dense enough to guaran-
tee connectivity and to satisfy the more specific requirements of
the underlying geographic routing, namely that it guarantees λpad-
padded paths for a small constant λpad.

Table 1: λpad in practice

rC GSP DSP Grd GrdRnd1 GrdRnd2

1 3.677 10.395 6.169 12.589 8.213
2 0.537 3.859 2.913 4.889 3.920

Table 1 shows the actual values for λpad for all five geograph-
ical routing algorithms. These values were computed over 10000
randomly selected paths. Notice that these are maximum values (as

per the definition of λpad-padded path) but at the chosen density
the average distance between a routing path and a straight line be-
tween source and destination is much smaller. For lack of space, in
the rest of the paper we discuss only the simulation with rC = 1.

Workloads: We consider two classes of scenarios for multicast
requests. One, which we denote as uniform in which requests in-
volve sources and destinations chosen uniformly over the whole
network, and one, which we denote as in-line, in which sources
and destinations are chosen on a line, or more specifically on a nar-
row band in the middle of the network. The first class is intended to
represent a generic traffic load. The second class is intended to rep-
resent a worst-case scenario for congestion. We also experimented
with absolute worst-case workloads in which all requests are be-
tween the same source and the same destination. We initially show
some results for all three cases for illustrative purposes, but then
we focus on the uniform and in-line only because the third class is
not very informative, since it incurs unavoidable congestion around
the source and destination nodes.

Figure 3 shows three “heat-map” graphs representing one simu-
lation run for each of the three classes of workloads, respectively.
The graphs represent the square region covering the simulated net-
work. Each point in the graph represents a node in the network
whose color represents the total traffic (number of wireless trans-
missions) affecting that node, which corresponds to load or con-
gestion of that node.

Analysis: In our analysis, we refer to a fixed set of all indepen-
dent simulation parameters as a scenario. Thus, in a scenario we
simulate all nodes running the same configuration of the geographic
routing and the same configuration of our multicast routing scheme.
We then simulate 1000 multicast requests, each with a fixed num-
ber of destinations chosen according to one of the scenario classes
(uniform or in-line).

For each scenario we run 50 simulations to account for the vari-
ability that is due to the randomized nature of our scheme and pos-
sibly of the underlying routing. Then, for each node we compute
the average load over the 50 runs, obtaining an approximation of
the expected load of that node for that particular scenario. We then
compute the network congestion as the maximum over all nodes of
the per-node expected load. This is the primary metric of interest
in this simulation analysis.

In summary, to answer our evaluation questions, we explore sce-
narios covering all combinations of the following parameters:

Intermediate point selection: type of algorithm and parameters



used to select the intermediate point. We use the angle-
based selection with bounds π/3, π/4, and π/6 denoted with
T60, T45, and T30, respectively. We then use the circular-
arc selection with distance multiplier γ = 0, 0.5, 1, 1.5, 2,
which we denote as C0, C0.5, C1, C1.5, and C2. Notice that
C0 corresponds to using a deterministic straight-line routing
scheme. This degenerate case is useful for comparison.

Geographical routing: type of algorithm used in the underlying
routing layer. We use the algorithms described in Section 7.1,
denoted as GSP, DSP, Grd, GrdRnd1, GrdRnd2.

Multicast size: size of multicast requests (incl. source node). We
use 2 (unicast), as well as 4, 8, and 16 (true multicast re-
quests), which we denote as M2, M4, M8, and M16, respec-
tively.

Workload class: location of sources and targets in multicast re-
quests, chosen according to the uniform and in-line model.

7.3 Results
We now report the most important results of the simulation anal-

ysis. We first focus on the performance of the underlying geo-
graphic routing layer. We found that in all our experiments, the
greedy algorithm yields the best results in terms of congestion. As
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Figure 4: Comparison of Geographic Routing Algorithms

an example, Figure 4 shows the network congestion incurred by
the various geographic routing primitives under a workload of uni-
form multicast requests of size 8, in combination with every variant
of our scheme. In these scenarios, the greedy algorithm (Grd) is
always the one that causes the lowest congestion, and as it turns
out, all other scenarios show similar results. This result is par-
ticularly interesting and positive because Grd is also the simplest
geographic algorithm available. Therefore, we dismiss all other
underlying routing algorithms for the rest of our analysis.

The next question we consider is how the network congestion is
affected by the selection of the intermediate point. The histogram
of Figure 4 already indicates that the angle-based selection meth-
ods T30, T45, and T60 work better than the method based on the
circular arc for distance factor γ > 1.

Figure 5 confirms this result. The two graphs show the network
congestion incurred by the various selection methods as a function
of the size of the multicast requests, for uniform and in-line work-
loads, respectively. The conclusion we can draw from these experi-
ments is that the angle-based schemes achieve the best results, only
slightly better than the circular-arc method with radius less than the
distance (γ < 1), and that the circular-arc method shows definitely
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Figure 5: Comparison of Intermediate-Point Selection Meth-

ods

worse performance with higher radii (γ > 1) with proportionally
worse outcomes in the case of uniform workloads. Also note that
for the in-line model, the deterministic C0 algorithm is the worst
one for small multicast requests and it becomes the best algorithm
for large multicast requests. For small requests, when routing de-
terministically, in the in-line scenario many routing paths overlap
and by routing around, the congestion can be reduced. For large
requests with all destinations on a line, the message has to be sent
along the whole line anyway, so that sending it directly along the
line becomes cheaper.

The graphs of Figure 5 also demonstrate that our multicast rout-
ing scheme performs well in an absolute sense and in particular
they seem to indicate that the scheme scales gracefully with a sub-
linear relation between the size of the multicast requests and con-
gestion. Recall that all workloads consist of 1000 requests, so, for
example, in the case of requests of size 16, that means that each
of the 1000 messages must be delivered to 15 destinations. Con-
sider this scenario in the extreme case of requests in which all des-
tinations lay on a line (or a narrow band) in the network, which
corresponds to the case of the in-line workloads. It is interesting to
notice that in this case, the scheme is capable of routing all requests
in such a way that the maximally-loaded node sees the equivalent
of a worst-case set of unicast requests.
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