
Chapter 8

Synchronizers

So far, we have mainly studied synchronous algorithms because generally, asyn-
chronous algorithms are often more di�cult to obtain and it is substantially
harder to reason about asynchronous algorithms than about synchronous ones.
For instance, computing a BFS tree (cf. Chapter 3) e�ciently requires much
more work in an asynchronous system. However, many real systems are not
synchronous and we therefore have to design asynchronous algorithms. In this
chapter, we will look at general simulation techniques, called synchronizers, that
allow to run a synchronous algorithm in an asynchronous environment.

8.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 8.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the ith

clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round i of the synchronous algorithm.

Theorem 8.2. If all generated clock pulses are valid according to Definition
8.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the ith pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first i� 1 rounds of the synchronous algorithm.

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 8.1, nodes
have to send additional messages for the purpose of synchronization. The total

71

72 CHAPTER 8. SYNCHRONIZERS

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T (S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by T

init

(S) and M
init

(S),
respectively. If T (A) and M(A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ttot

and Mtot of the resulting asynchronous algorithm then become

Ttot = T
init

(S)+T (A)·(1+T (S)) and Mtot = M
init

(S)+M(A)+T (A)·M(S),

respectively.

Remarks:

• Because the initialization only needs to be done once for each network, we
will mostly be interested in the overheads T (S) and M(S) per round of
the synchronous algorithm.

Definition 8.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 8.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 8.1 for generating a valid next pulse.

Remarks:

• In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain pulse,
it knows that it is safe with respect to that pulse. Note that sending
acknowledgements does not increase the asymptotic time and message
complexities.

8.2 Synchronizer ↵

Algorithm 8.1 Synchronizer ↵ (at node v)

1: wait until v is safe
2: send SAFE to all neighbors
3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer ↵ is very simple. It does not need an initialization. Using ac-
knowledgements, each node eventually detects that it is safe. It then reports this
fact directly to all its neighbors. Whenever a node learns that all its neighbors
are safe, a new pulse is generated. Algorithm 8.1 formally describes synchronizer
↵.

8.3. SYNCHRONIZER � 73

Theorem 8.5. The time and message complexities of synchronizer ↵ per syn-
chronous round are

T (↵) = O(1) and M(↵) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer ↵ sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety.

Remarks:

• Synchronizer ↵ was presented in a framework, mostly set up to have a
common standard to discuss di↵erent synchronizers. Without the frame-
work, synchronizer ↵ can be explained more easily:

1. Send message to all neighbors, include round information i and actual
data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next round.

• Although synchronizer ↵ allows for simple and fast synchronization, it
produces awfully many messages. Can we do better? Yes.

8.3 Synchronizer �

Algorithm 8.2 Synchronizer � (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all its children in T
3: if v 6= ` then
4: send SAFE message to parent in T
5: wait until PULSE message received from parent in T
6: end if
7: send PULSE message to children in T
8: start new pulse

Synchronizer � needs an initialization that computes a leader node ` and a
spanning tree T that is rooted at `. As soon as all nodes are safe, this information
is propagated to ` by means of a convergecast. The leader then broadcasts this
information to all nodes. The details of synchronizer � are given in Algorithm
8.2.

Theorem 8.6. The time and message complexities of synchronizer � per syn-
chronous round are

T (�) = O(diameter(T))  O(n) and M(�) = O(n).

The time and message complexities for the initialization are

T
init

(�) = O(n) and M
init

(�) = O(m+ n log n).

74 CHAPTER 8. SYNCHRONIZERS

Proof. Because the diameter of T is at most n � 1, the convergecast and the
broadcast together take at most 2n � 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n� 2 synchronization messages (one in each direction
over each edge of T).

With an improvement (due to Awerbuch) of the GHS algorithm (Algorithm
3.5) you saw in Chapter 3, it is possible to construct an MST in time O(n)
with O(m+n log n) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages.

Remarks:

• We now got a time-e�cient synchronizer (↵) and a message-e�cient syn-
chronizer (�), it is only natural to ask whether we can have the best of
both worlds. And, indeed, we can. How is that synchronizer called? Quite
obviously: � .

8.4 Synchronizer �

Figure 8.1: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer � can be seen as a combination of synchronizers ↵ and �. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C

1

and C
2

are called neighboring if there are nodes u 2 C
1

and v 2 C
2

for
which (u, v) 2 E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 8.1
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.

8.4. SYNCHRONIZER � 75

Synchronizer � works in two phases. In a first phase, synchronizer � is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer ↵ between clusters. A detailed
description is given by Algorithm 8.3.

Algorithm 8.3 Synchronizer � (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all children in intracluster tree
3: if v is not cluster leader then
4: send SAFE message to parent in intracluster tree
5: wait until CLUSTERSAFE message received from parent
6: end if
7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11: send NEIGHBORSAFE message to parent in intracluster tree
12: wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

Theorem 8.7. Let mC be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the maximum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer � are

T (�) = O(k) and M(�) = O(n+mC).

Proof. We ignore acknowledgements, as they do not a↵ect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n+ 2mC = O(n+mC).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k).

76 CHAPTER 8. SYNCHRONIZERS

8.5 Network Partition

We will now look at the initialization phase of synchronizer �. Algorithm 8.4
describes how to construct a partition into clusters that can be used for syn-
chronizer �. In Algorithm 8.4, B(v, r) denotes the ball of radius r around v,
i.e., B(v, r) = {u 2 V : d(u, v)  r} where d(u, v) is the distance between u and
v. The algorithm has a parameter ⇢ > 1. The clusters are constructed sequen-
tially. Each cluster is started at an arbitrary node that has not been included
in a cluster. Then the cluster radius is grown as long as the cluster grows by a
factor more than ⇢.

Algorithm 8.4 Cluster construction

1: while unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > ⇢|B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) //all nodes in B(v, r) are now processed
8: end while

Remarks:

• The algorithm allows a trade-o↵ between the cluster diameter k (and thus
the time complexity) and the number of intercluster edges mC (and thus
the message complexity). We will quantify the possibilities in the next
section.

• Two very simple partitions would be to make a cluster out of every single
node or to make one big cluster that contains the whole graph. We then
get synchronizers ↵ and � as special cases of synchronizer �.

Theorem 8.8. Algorithm 8.4 computes a partition of the network graph into
clusters of radius at most log⇢ n. The number of intercluster edges is at most
(⇢� 1) · n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than ⇢. Since there are only n nodes in the graph, this
can happen at most log⇢ n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C of size |C|. We know that
C = B(v, r) for some v 2 V and r � 0. Further, we know that |B(v, r + 1)| 
⇢ · |B(v, r)|. The number of nodes adjacent to cluster C is therefore at most
|B(v, r + 1) \ B(v, r)|  ⇢ · |C| � |C|. Hence, the number of intercluster edges
adjacent to C is at most (⇢ � 1) · |C|. Summing over all clusters, we get that
the total number of intercluster edges is at most (⇢� 1) · n.

Corollary 8.9. Using ⇢ = 2, Algorithm 8.4 computes a clustering with cluster
radius at most log

2

n and with at most n intercluster edges.

8.5. NETWORK PARTITION 77

Corollary 8.10. Using ⇢ = n1/k, Algorithm 8.4 computes a clustering with
cluster radius at most k and at most O(n1+1/k) intercluster edges.

Remarks:

• Algorithm 8.4 describes a centralized construction of the partitioning of
the graph. For ⇢ � 2, the clustering can be computed by an asynchronous
distributed algorithm in time O(n) with O(m+n log n) (reasonably sized)
messages (showing this will be part of the exercises).

• It can be shown that the trade-o↵ between cluster radius and number of
intercluster edges of Algorithm 8.4 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n1+c/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer �.

Corollary 8.11. The time and message complexities of synchronizer � per
synchronous round are

T (�) = O(k) and M(�) = O(n1+1/k).

The time and message complexities for the initialization are

T
init

(�) = O(n) and M
init

(�) = O(m+ n log n).

Remarks:

• The synchronizer idea and the synchronizers discussed in this chapter are
due to Baruch Awerbuch.

• In Chapter 3, you have seen that by using flooding, there is a very simple
synchronous algorithm to compute a BFS tree in time O(D) with mes-
sage complexity O(m). If we use synchronizer � to make this algorithm
asynchronous, we get an algorithm with time complexity O(n +D log n)
and message complexity O(m+n log n+D ·n) (including the initialization
phase).

• The synchronizers ↵, �, and � achieve global synchronization, i.e., ev-
ery node generates every clock pulse. The disadvantage of this is that
nodes that do not participate in a computation also have to participate in
the synchronization. In many computations (e.g. in a BFS construction),
many nodes only participate for a few synchronous rounds. An improved
synchronizer due to Awerbuch and Peleg can exploit such a scenario and
achieves time and message complexity O(log3 n) per synchronous round
(without initialization).

• It can be shown that if all nodes in the network need to generate all pulses,
the trade-o↵ of synchronizer � is asymptotically optimal.

78 CHAPTER 8. SYNCHRONIZERS

• Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as a MIS or a dominating set are based on some kind of
network partitions or covers.

