
Chapter 9

Dynamic Networks

Many large-scale distributed systems and networks are dynamic. In some net-
works, e.g., peer-to-peer, nodes participate only for a short period of time, and
the topology can change at a high rate. In wireless ad-hoc networks, nodes are
mobile and move around. In this chapter, we will study how to solve some basic
tasks if the network is dynamic. Under what conditions is it possible to compute
an accurate estimate of the size or some other property of the system? How
e�ciently can information be disseminated reliably in the network? To what
extent does stability in the communication graph help solve these problems?

There are various reasons why networks can change over time and as a con-
sequence, there also is a wide range of possible models for dynamic networks.
Nodes might join or leave a distributed system. Some components or commu-
nication links may fail in di↵erent ways. Especially if the network devices are
mobile, the connectivity between them can change. Dynamic changes can occur
constantly or they might be infrequent enough so that the system can adapt to
each change individually.

We will look at a synchronous dynamic network model in which the graph
can change from round to round in a worst-case manner. To simplify things
(and to make the problems we study well-defined), we assume that the set of
nodes in the network is fixed and does not change. However, we will make
almost no assumptions how the set of edges changes over time. We require
some guarantees about the connectivity, apart from this, in each round, the
communication graph is chosen in a worst-case manner by an adversary.

9.1 Synchronous Edge-Dynamic Networks

We model a synchronous dynamic network by a dynamic graph G = (V,E),
where V is a static set of nodes, and E : N

0

!
�
V
2

�
is a function mapping a round

number r 2 N
0

to a set of undirected edges E(r). Here
�
V
2

�
:= {{u, v} | u, v 2 V }

is the set of all possible undirected edges over V .

Definition 9.1 (T -Interval Connectivity). A dynamic graph G = (V,E) is
said to be T -interval connected for T 2 N if for all r 2 N, the static graph

Gr,T :=
⇣
V,

Tr+T�1

i=r E(r)
⌘

is connected. If G is 1-interval connected we say

that G is always connected.

79

80 CHAPTER 9. DYNAMIC NETWORKS

For simplicity, we restrict to deterministic algorithms. Nodes communicate
with each other using anonymous broadcast. At the beginning of round r, each
node u decides what message to broadcast based on its internal state; at the
same time (and independently), the adversary chooses a set E(r) of edges for
the round. As in standard synchronous message passing, all nodes v for which
{u, v} 2 E(r) receive the message broadcast by node u in round r and each node
can perform arbitrary local computations upon receiving the messages from its
neighbors. We assume that all nodes in the network have a unique identifier
(ID). In most cases, we will assume that messages are restricted to O(log n) bits.
In these cases, we assume that node IDs can be represented using O(log n) bits,
so that a constant number of node IDs and some additional information can be
transmitted in a single message. We refer to the special case where all nodes are
woken up at once as synchronous start and to the general case as asynchronous
start.

We assume that each node in the network starts an execution of the protocol
in an initial state which contains its own ID and its input. Additionally, nodes
know nothing about the network, and initially cannot distinguish it from any
other network.

9.2 Problem Definitions

In the context of this chapter, we study the following problems.

Counting. An algorithm is said to solve the counting problem if whenever it is
executed in a dynamic graph comprising n nodes, all nodes eventually terminate
and output n.

k-verification. Closely related to counting, the k-verification problem re-
quires nodes to determine whether or not n  k. All nodes begin with k as
their input, and must eventually terminate and output “yes” or “no”. Nodes
must output “yes” if and only if there are at most k nodes in the network.

k-token dissemination. An instance of k-token dissemination is a pair (V, I),
where I : V ! P (T) assigns a set of tokens from some domain T to each node,
and |

S
u2V I(v)| = k. An algorithm solves k-token dissemination if for all

instances (V, I), when the algorithm is executed in any dynamic graph G =
(V,E), all nodes eventually terminate and output

S
u2V I(u). We assume that

each token in the nodes’ input is represented using O(log n) bits. Nodes may or
may not know k, depending on the context. Of particular interest is all-to-all
token dissemination, a special case where k = n and each node initially knows
exactly one token, i.e., |I(u)| = 1 for all nodes u.

k-committee election. As an useful step towards solving counting and to-
ken dissemination, we consider a problem called k-committee election. In this
problem, nodes must partition themselves into sets, called committees, such that

a) the size of each committee is at most k and

b) if k � n, then there is just one committee containing all nodes.

9.3. BASIC INFORMATION DISSEMINATION 81

Each committee has a unique committee ID, and the goal is for all nodes to
eventually terminate and output a committee ID such that the two conditions
are satisfied.

9.3 Basic Information Dissemination

To start, let us study how a single piece of information is propagated through
a dynamic network. We assume that we have a dynamic network graph G with
n nodes such that G is always connected (G is 1-interval connected as defined
in Definition 9.1). Further assume that there is a single piece of information
(token), which is initially known by a single node.

Theorem 9.2. Assume that there is a single token in the network. Further
assume that at time 0 at least one node knows the token and that once they
know the token, all nodes broadcast it in every round. In a 1-interval connected
graph G = (V,E) with n nodes, after r  n�1 rounds, at least r+1 nodes know
the token. Hence, in particular after n� 1 rounds, all nodes know the token.

Proof. We can proof the theorem by induction on r. Let T (r) be the set of
nodes that know the token after r rounds. We need to show that for all r � 0,
|T (r)| � min {r + 1, n}. Because we assume that at time 0 at least one node
knows the token, clearly, |T (0)| � 1. For the induction step, assume that after
r rounds, |T (r)| � min {r + 1, n}. If T (r) = V , we have |T (r+ 1)| � |T (r)| = n
and we are done. Otherwise, we have V \T (r) 6= ;. Therefore, by the 1-interval
connectivity assumption, there must be two nodes u 2 T (r) and v 2 V \ T (r)
such that {u, v} 2 E(r + 1). Hence, in round r + 1, node v gets the token an
therefore |T (r + 1)| � |T (r)|+ 1 � min {r + 2, n}.

Remarks:

• Note that Theorem 9.2 only shows that after n� 1 rounds all nodes know
the token. If the nodes do not know n or an upper bound on n, they do
not know if all nodes know the token.

• We can apply the above techniques also if there is more than one token
in the network, provided that tokens form a totally-ordered set and nodes
forward the smallest (or biggest) token they know. It is then guaranteed
that the smallest (resp. biggest) token in the network will be known by all
nodes after at most n� 1 rounds. Note, however, that in this case nodes
do not know when they know the smallest or biggest token.

The next theorem shows that essentially, for the general asynchronous start
case, 1-interval connectivity does not su�ce to obtain anything better than what
is stated by the above theorem. If nodes do not know n or an upper bound on
n initially, they cannot find n.

Theorem 9.3. Counting is impossible in 1-interval connected graphs with asyn-
chronous start.

Proof. Suppose by way of contradiction that A is a protocol for counting which
requires at most t(n) rounds in 1-interval connected graphs of size n. Let n0 =

82 CHAPTER 9. DYNAMIC NETWORKS

max {t(n) + 1, n+ 1}. We will show that the protocol cannot distinguish a static
line of length n from a dynamically changing line of length n0.

Given a sequence A = a
1

� . . . � am, let shift(A, r) denote the cyclic left-shift
of A in which the first r symbols (r � 0) are removed from the beginning of
the sequence and appended to the end. Consider an execution in a dynamic
line of length n0, where the line in round r is composed of two adjacent sections
A � Br, where A = 0 � . . . � (n � 1) remains static throughout the execution,
and B(r) = shift(n � . . . � (n0 � 1), r) is left-shifted by one in every round. The
computation is initiated by node 0 and all other nodes are initially asleep. We
claim that the execution of the protocol in the dynamic graph G = A � B(r)
is indistinguishable in the eyes of nodes 0, . . . , n � 1 from an execution of the
protocol in the static line of length n (that is, the network comprising section
A alone). This is proven by induction on the round number, using the fact that
throughout rounds 0, . . . , t(n)� 1 none of the nodes in section A ever receives a
message from a node in section B: although one node in section B is awakened
in every round, this node is immediately removed and attached at the end of
section B, where it cannot communicate with the nodes in section A. Thus,
the protocol cannot distinguish the dynamic graph A from the dynamic graph
A �B(r), and it produces the wrong output in one of the two graphs.

Remark:

• The above impossibility result extends to all problems introduced in Sec-
tion 9.2 as long as we do not assume that the nodes know n or an upper
bound on n.

In light of the impossibility result of Theorem 9.3, let us now first consider
the synchronous start case where all nodes start the protocol at time 0 (with
round 1). We first look at the case where there is no bound on the message
size and describe a simple linear-time protocol for counting (and token dissem-
ination). The protocol is extremely simple, but it demonstrates some of the
ideas used in some of the later algorithms, where we eliminate the large mes-
sages using a stability assumption (T -interval connectivity) which allows nodes
to communicate with at least one of their neighbors for at least T rounds.

In the simple protocol, all nodes maintain a set A containing all the IDs they
have collected so far. In every round, each node broadcasts A and adds any IDs
it receives. Nodes terminate when they first reach a round r in which |A|  r.

A {self };
for r = 1, 2, . . . do

broadcast A;
receive B

1

, . . . , Bs from neighbors;
A A [B

1

[. . . [Bs;
if |A|  r then terminate and output |A|;

end

Algorithm 1: Counting in linear time using large messages
Before analyzing Algorithm 1, let us fix some notation that will help to argue

about the algorithms we will study. If x is a variable of an algorithm, let xu(r)
be the value of the variable x at node u after r rounds (immediately before the
broadcast operation of round r+1). For instance in Algorithm 1, Au(r) denotes
the set of IDs of node u at the end of the rth iteration of the for-loop.

9.3. BASIC INFORMATION DISSEMINATION 83

Lemma 9.4. Assume that we are given an 1-interval connected graph G =
(V,E) and that all nodes in V execute Algorithm 1. If all nodes together start
at time 0, we have |Au(r)| � r + 1 for all u 2 V and r < n.

Proof. We prove the lemma by induction on r. We clearly have |Au(0)| = 1 for
all u because initially each node includes its own ID in A. Hence, the lemma is
true for r = 0.

For the induction step, assume that the claim of the lemma is true for some
given r < n� 1 for all dynamic graphs G. Let A0

u(r+1) be the set of identifiers
known by node u if all nodes start the protocol at time 1 (instead of 0) and run
it for r rounds. By the induction hypothesis, we have |A0

u(r+1)| � r+1. If the
algorithm is started at time 0 instead of time 1, the set of identifiers in Au(r+1)
is exactly the union of all the identifiers known by the nodes in A0

u(r+1) after the
first round (at time 1). This includes all the nodes in A0

u(r+1) as well as their
neighbors in the first round. If |A0

u(r+1)| � r+2, we also have |Au(r+1)| � r+2
and we are done. Otherwise, by 1-interval connectivity, there must at least be
one node v 2 V \A0

u(r+1) for which there is an edge to a node in A0
u(r+1) in

round 1. We therefore have |Au(r + 1)| � |A0
u(r + 1)|+ 1 � r + 2.

Theorem 9.5. In an 1-interval connected graph G, Algorithm 1 terminates at
all nodes after n rounds and output n.

Proof. Follows directly from Lemma 9.4. For all nodes u, |Au(r)| � r + 1 > r
for all r < n and |Au(n)| = |Au(n� 1)| = n.

Lemma 9.6. Assume that we are given a 2-interval connected graph G = (V,E)
and that all nodes in V execute Algorithm 1. If node u is waken up and starts
the algorithm at time t, it holds that have |Au(t+2r)| � r+1 for all 0  r < n.

Proof. The proof follows along the same lines as the proof of Lemma 9.4 (see
exercises).

Remarks:

• Because we did not bound the maximal message size and because every
node receives information (an identifier) from each other node, Algorithm
1 can be used to solve all the problems defined in Section 9.2. For the
token dissemination problem, the nodes also need to attach a list of all
known tokens to all messages

• As a consequence of Theorem 9.3, 1-interval connectivity does not su�ce
to compute the number of nodes n in a dynamic network if nodes start
asynchronously. It turns out that in this case, we need a slightly stronger
connectivity assumption. If the network is 2-interval connected instead
of 1-interval connected, up to a constant factor in the time complexity,
the above results can also be obtained in the asynchronous start case (see
exercises).

• For the remainder of the chapter, we will only consider the simpler syn-
chronous start case. For T � 2, all discussed results that hold for T -
interval connected networks with synchronous start also hold for asyn-
chronous start with the same asymptotic bounds.

84 CHAPTER 9. DYNAMIC NETWORKS

9.4 Small Messages

We now switch to the more interesting (and more realistic) case where in each
round, each node can only broadcast a message of O(log n) bits. We will first
show how to use k-committee election to solve counting. We first describe how
to obtain a good upper bound on n. We will then see that the same algorithm
can also be used to find n exactly and to solve token dissemination.

9.4.1 k-Verification

The counting algorithm works by successive doubling: at each point the nodes
have a guess k for the size of the network, and attempt to verify whether or not
k � n. If it is discovered that k < n, the nodes double k and repeat; if k � n,
the nodes halt and output the count.

Suppose that nodes start out in a state that represents a solution to k-
committee election: each node has a committee ID, such that no more than k
nodes have the same ID, and if k � n then all nodes have the same committee ID.
The problem of checking whether k � n is then equivalent to checking whether
there is more than one committee: if k � n there must be one committee only,
and if k < n there must be more than one. Nodes can therefore check if k � n
by executing a simple k-round protocol that checks if there is more than one
committee in the graph.

The k-verification protocol Each node has a local variable x , which is
initially set to 1. While xu = 1, node u broadcasts its committee ID. If it hears
from some neighbor a di↵erent committee ID from its own, or the special value
?, it sets xu 0 and broadcasts ? in all subsequent rounds. After k rounds,
all nodes output the value of their x variable.

Lemma 9.7. If the initial state of the execution represents a solution to k-
committee election, at the end of the k-verification protocol each node outputs 1
i↵ k � n.

Proof. First suppose that k � n. In this case there is only one committee in
the graph; no node ever hears a committee ID di↵erent from its own. After k
rounds all nodes still have x = 1, and all output 1.

Next, suppose k < n. We can show that after the ith round of the protocol,
at least i nodes in each committee have x = 0. In any round of the protocol,
consider a cut between the nodes that belong to a particular committee and
still have x = 1, and the rest of the nodes, which either belong to a di↵erent
committee or have x = 0. From 1-interval connectivity, there is an edge in
the cut, and some node u in the committee that still has xu = 1 hears either
a di↵erent committee ID or ?. Node u then sets xu 0, and the number of
nodes in the committee that still have x = 1 decreases by at least one. Since
each committee initially contains at most k nodes, after k rounds all nodes in
all committees have x = 0, and all output 0.

9.4.2 k-Committee Election

We can solve k-committee in O(k2) rounds as follows. Each node u stores two
local variables, committeeu and leaderu. A node that has not yet joined a

9.4. SMALL MESSAGES 85

leader self ;
committee ?;
for i = 0, . . . , k do

// Polling phase

if committee = ? then
min active self ; // The node nominates itself for selection

else
min active ?;

end
for j = 0, . . . , k � 1 do

broadcast min active;
receive x

1

, . . . , xs from neighbors;
min active min {min active, x

1

, . . . , xs};
end
// Update leader

leader min {leader ,min active};
// Selection phase

if leader = self then
// Leaders invite the smallest ID they heard

invitation (self ,min active);
else

// Non-leaders do not invite anybody

invitation ?
end
for j = 0, . . . , k � 1 do

broadcast invitation;
receive y

1

, . . . , ys from neighbors;
invitation min {invitation, y

1

, . . . , ys} ; // (in lexicographic

order)

end
// Join the leader’s committee, if invited

if invitation = (leader , self) then
committee = leader ;

end

end
if committee = ? then

committee self ;
end

Algorithm 2: k-committee in always-connected graphs

86 CHAPTER 9. DYNAMIC NETWORKS

committee is called active, and a node that has joined a committee is inactive.
Once nodes have joined a committee they do not change their choice.

Initially all nodes consider themselves leaders, but throughout the protocol,
any node that hears an ID smaller than its own adopts that ID as its leader.
The protocol proceeds in k cycles, each consisting of two phases, polling and
selection.

1. Polling phase: for k�1 rounds, all nodes propagate the ID of the smallest
active node of which they are aware.

2. Selection phase: in this phase, each node that considers itself a leader
selects the smallest ID it heard in the previous phase and invites that
node to join its committee. An invitation is represented as a pair (x, y),
where x is the ID of the leader that issued the invitation, and y is the ID
of the invited node. All nodes propagate the smallest invitation of which
they are aware for k � 1 (invitations are sorted in lexicographic order, so
the invitations issued by the smallest node in the network will win out
over other invitations. It turns out, though, that this is not necessary for
correctness; it is su�cient for each node to forward an arbitrary invitation
from among those it received).

At the end of the selection phase, a node that receives an invitation to join
its leader’s committee does so and becomes inactive. (Invitations issued
by nodes that are not the current leader can be accepted or ignored; this,
again, does not a↵ect correctness.)

At the end of the k cycles, any node u that has not been invited to join a
committee outputs committeeu = u. The details are given in Algorithm 2.

Lemma 9.8. Algorithm 2 solves the k-committee problem in O(k2) rounds in
1-interval connected networks.

Proof. The time complexity is immediate. To prove correctness, we show that
after the protocol ends, the values of the local committeeu variables constitute
a valid solution to k-committee.

1. In each cycle, each node invites at most one node to join its committee.
After k cycles at most k nodes have joined any committee. Note that the
first node invited by a leader u to join u’s committee is always u itself.
Thus, if after k cycles node u has not been invited to join a committee, it
follows that u did not invite any other node to join its committee; when it
forms its own committee in the last line of the algorithm, the committee’s
size is 1.

2. Suppose that k � n, and let u be the node with the smallest ID in the
network. Following the polling phase of the first cycle, all nodes v have
leaderv = u for the remainder of the protocol. Thus, throughout the
execution, only node u issues invitations, and all nodes propagate u’s
invitations. Since k � n rounds are su�cient for u to hear the ID of the
minimal active node in the network, in every cycle node u successfully
identifies this node and invites it to join u’s committee. After k cycles, all
nodes will have joined.

9.5. MORE STABLE GRAPHS 87

Remark:

• The protocol can be modified easily to solve all-to-all token dissemination
if k � n. Let tu be the token node u received in its input (or ? if node u
did not receive a token). Nodes attach their tokens to their IDs, and send
pairs of the form (u, tu) instead of just u. Likewise, invitations now contain
the token of the invited node, and have the structure (leader , (u, tu)). The
min operation disregards the token and applies only to the ID. At the end
of each selection phase, nodes extract the token of the invited node, and
add it to their collection. By the end of the protocol every node has been
invited to join the committee, and thus all nodes have seen all tokens.

9.5 More Stable Graphs

S ;;
for i = 0, . . . , dk/T e � 1 do

for r = 0, . . . , 2T � 1 do
if S 6= A then

t min (A \ S);
broadcast t;
S S [{t}

end
receive t

1

, . . . , ts from neighbors;
A A [{t

1

, . . . , ts}
end
S ;

end
return A

Procedure disseminate(A, T, k)

In this section we show that in T -interval connected graphs the computation
can be sped up by a factor of T . To do this we employ a neat pipelining e↵ect,
using the temporarily stable subgraphs that T -interval connectivity guarantees;
this allows us to disseminate information more quickly. Basically, because we
are guaranteed that some edges and paths persist for T rounds, it su�ces to
send a particular ID or token only once in T rounds to guarantee progress.
Other rounds can then be used for di↵erent tokens. For convenience we assume
that the graph is 2T -interval connected for some T � 1.

Procedure disseminate gives an algorithm for exchanging at least T pieces
of information in n rounds when the dynamic graph is 2T -interval connected.
The procedure takes three arguments: a set of tokens A, the parameter T , and
a guess k for the size of the graph. If k � n, each node is guaranteed to learn
the T smallest tokens that appeared in the input to all the nodes.

The execution of procedure disseminate is divided into dk/T e phases, each
consisting of 2T rounds. During each phase, each node maintains the set A of
tokens it has already learned and a set S of tokens it has already broadcast
in the current phase (initially empty). In each round of the phase, the node

88 CHAPTER 9. DYNAMIC NETWORKS

broadcasts the smallest token it has not yet broadcast in the current phase,
then adds that token to S.

We refer to each iteration of the inner loop as a phase. Since a phase lasts
2T rounds and the graph is 2T -interval connected, there is some connected
subgraph that exists throughout the phase. Let G0

i be a connected subgraph
that exists throughout phase i, for i = 0, . . . , dk/T e � 1. We use disti(u, v) to
denote the distance between nodes u, v 2 V in G0

i.
Let Kt(r) denote the set of nodes that know token t by the beginning of

round r, that is, Kt(r) = {u 2 V | t 2 Au(r)}. In addition, let I be the set of
T smallest tokens in

S
u2V Au(0). Our goal is to show that when the protocol

terminates we have Kt(r) = V for all t 2 I.
For a node u 2 V , a token t 2 P , and a phase i, we define tdisti(u, t) to be

the distance of u from the nearest node in G0
i that knows t at the beginning of

phase i:
tdist(u, t) := min {disti(u, v) | v 2 Kt(2T · i)} .

Here and in the sequel, we use the convention that min ; := 1. For convenience,
we use Si

u(r) := Su(2T · i + r) to denote the value of Su in round r of phase
i. Similarly we denote Ai

u(r) := Au(2T · i + r) and Ki
t(r) := Kt(2T · i + r).

Correctness hinges on the following property.

Lemma 9.9. For any node u 2 V , token t 2
S

v2V Av(0), and round r such
that tdisti(u, t)  r  2T , either t 2 Si

u(r + 1) or Su(r + 1) includes at least
(r � tdisti(u, t)) tokens that are smaller than t.

Proof. By induction on r. For r = 0 the claim is immediate.
Suppose the claim holds for round r � 1 of phase i, and consider round

r � tdisti(u, t). If r = tdisti(u, t), then r � tdisti(u, t) = 0 and the claim
holds trivially. Thus, suppose that r > tdisti(u, t). Hence, r � 1 � tdisti(u, t),
and the induction hypothesis applies: either t 2 Si

u(r) or S
i
u(r) includes at least

(r � 1� tdisti(u, t)) tokens that are smaller than t. In the first case we are done,
since Si

u(r) ✓ Si
u(r+1); thus, assume that t 62 Si

u(r), and Si
u(r) includes at least

(r � 1� tdisti(u, t)) tokens smaller than t. However, if Si
u(r) includes at least

(r � tdisti(u, t)) tokens smaller than t, then so does Si
u(r+ 1), and the claim is

again satisfied; thus we assume that Si
u(r) includes exactly (r � 1� tdisti(u, t))

tokens smaller than t.
It is su�cient to prove that min

�
Ai

u(r) \ Si
u(r)

�
 t: if this holds, then

in round r node u broadcasts min
�
Ai

u(r) \ Si
u(r)

�
, which is either t or a to-

ken smaller than t; thus, either t 2 Si
u(r + 1) or Si

u(r + 1) includes at least
(r � tdisti(u, t)) tokens smaller than t, and the claim holds.

First we handle the case where tdisti(u, t) = 0. In this case, t 2 Ai
u(0) ✓

Ai
u(r). Since we assumed that t 62 Si

u(r) we have t 2 Ai
u(r) \ Si

u(r), which
implies that min

�
Ai

u(r) \ Si
u(r)

�
 t.

Next suppose that tdisti(u, t) > 0. Let x 2 Ki
t(0) be a node such that

disti(u, x) = tdist(u, t) (such a node must exist from the definition of tdisti(u, t)),
and let v be a neighbor of u along the path from u to x in Gi, such that
disti(v, x) = disti(u, x)�1 < r. From the induction hypothesis, either t 2 Si

v(r)
or Si

v(r) includes at least (r � 1� tdisti(v, t)) = (r � tdisti(u, t)) tokens that are
smaller than t. Since the edge between u and v exists throughout phase i, node
u receives everything v sends in phase i, and hence Si

v(r) ✓ Ai
u(r). Finally,

because we assumed that Si
u(r) contains exactly (r � 1� tdisti(u, t)) tokens

9.5. MORE STABLE GRAPHS 89

smaller than t, and does not include t itself, we have min
�
Ai

u(r) \ Si
u(r)

�
 t,

as desired.

Using Lemma 9.9 we can show: correct.

Lemma 9.10. If k � n, at the end of procedure disseminate the set Au of
each node u contains the T smallest tokens.

Proof. Let Nd
i (t) := {u 2 V | tdisti(u, t)  d} denote the set of nodes at dis-

tance at most d from some node that knows t at the beginning of phase i, and
let t be one of the T smallest tokens.

From Lemma 9.9, for each node u 2 NT
i (t), either t 2 Si

u(2T +1) or Si
u(2T +

1) contains at least 2T � T = T tokens that are smaller than t. But t is one
of the T smallest tokens, so the second case is impossible. Therefore all nodes
in NT

i (t) know token t at the end of phase i. Because Gi is connected we have
|NT

i (t)| � min {n� |Ki(t)|, T}; that is, in each phase T new nodes learn t, until
all the nodes know t. Since there are no more than k nodes and we have dk/T e
phases, at the end of the last phase all nodes know t.

To solve counting and token dissemination with up to n tokens, we use
Procedure disseminate to speed up the k-committee election protocol from
Algorithm 2. Instead of inviting one node in each cycle, we can use disseminate
to have the leader learn the IDs of the T smallest nodes in the polling phase,
and use procedure disseminate again to extend invitations to all T smallest
nodes in the selection phase. Thus, in O(k+T) rounds we can increase the size
of the committee by T .

Theorem 9.11. It is possible to solve k-committee election in O(k + k2/T)
rounds in T -interval connected graphs. When used in conjunction with the k-
verification protocol, this approach yields O(n+n2/T)-round protocols for count-
ing all-to-all token dissemination.

Remarks:

• The same result can also be achieved for the asynchronous start case, as
long as T � 2.

• The described algorithm is based on the assumptions that all nodes know
T (or that they have a common lower bound on T). At the cost of a
log-factor, it is possible to drop this assumption and adapt to the actual
interval-connectivity T .

• It is not known whether the bound of Theorem 9.11 is tight. It can be
shown that it is tight for a restricted class of protocols (see exercises).

• If we make additional assumptions about the stable subgraphs that are
guaranteed for intervals of length T , the bound in Theorem 9.11 can be
improved. E.g., if intervals of length T induce a stable k-vertex connected
subgraph, the complexity can be improved to O(n+ n2/(kT)).

