
Network Algorithms

Fabian Kuhn
kuhn@informatik.uni-freiburg.de

Lecture notes joint with and based on a course by
Roger Wattenhofer, ETH Zurich

Additional credit goes to:
Christoph Lenzen
Thomas Locher



2



Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
Typical “old school” examples are parallel computers or the Internet. More re-
cent application examples of distributed systems include peer-to-peer systems,
sensor networks, or multi-core architectures.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they may have their own hardware, their own code, and
sometimes their own independent task. Nevertheless, the nodes may share com-
mon resources and information and, in order to solve a problem that concerns
several—or maybe even all—nodes, coordination is necessary.

Despite these commonalities, a peer-to-peer system, for example, is quite
different from a multi-core architecture. Due to such differences, many differ-
ent models and parameters are studied in the area of distributed computing.
In some systems, the nodes operate synchronously, and in other systems they
operate asynchronously. There are simple homogeneous systems, and hetero-
geneous systems where different types of nodes, potentially with different ca-
pabilities, objectives etc., need to interact. There are different communication
techniques: nodes may communicate by exchanging messages, or by means of
shared memory. Sometimes the communication infrastructure is tailor-made for
an application, sometimes one has to work with any given infrastructure. The
nodes in a system sometimes work together to solve a global task, occasionally
the nodes are autonomous agents that have their own agenda and compete for
common resources. Sometimes the nodes can be assumed to work correctly, at
times they may exhibit failures. In contrast to a single-node system, distributed
systems may still function correctly despite failures as other nodes can take over
the work of the failed nodes. There are different kinds of failures that can be
considered: nodes may just crash, or they might exhibit an arbitrary, erroneous
behavior, maybe even to a degree where it cannot be distinguished from mali-
cious (also known as Byzantine) behavior. It is also possible that the nodes do
follow the rules, however they tweak the parameters to get the most out of the
system; in other words, the nodes act selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in greater detail now, but simply

3



4

define them when we use them. Towards the end of the course a general picture
should emerge. Hopefully!

This course introduces the basic principles of distributed computing, high-
lighting common themes and techniques. In particular, we study some of the
fundamental issues underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system so that it
performs some task efficiently?

• Fault-tolerance: As mentioned above, one major advantage of a distrib-
uted system is that even in the presence of failures the system as a whole
may survive.

• Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address the fundamental question in distributed
computing whether a local solution is possible for a wide range of problems.

• Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate the computation (and the communication). This is typically
achieved by a technique called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous system?

• Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve and
have their own courses. Examples for such topics are distributed programming,
software engineering, and also security and cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!


