Network Algorithms, Summer Term 2014 Problem Set 3 - Sample Solution

Exercise 1: Concurrent Ivy

1. The three nodes are served in the order v_{2}, v_{3}, v_{1}.
2. Figure 1 depicts the structure of the tree after the requests have been served. Since v_{1} is served last, it is the holder of the token at the end.

Figure 1: Tree after the requests have been served.

Exercise 2: Tight Ivy

In order to show that the bound of $\log n$ steps on average is tight, we construct a special tree, called Binomial Tree, which is defined recursively as follows. The tree \mathcal{T}_{0} consists of a single node. The tree \mathcal{T}_{i} consists of a root together with i subtrees, which are $\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$, rooted at the i children of the root, see Figure 2.
First, we will show that the number of nodes in the tree \mathcal{T}_{i} is 2^{i}. This obviously holds for \mathcal{T}_{0}. The induction hypothesis is that it holds for all $\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$. It follows that the number of nodes of \mathcal{T}_{i} is $n=1+\sum_{j=0}^{i-1} 2^{j}=2^{i}$.
We will show now that the radius of the root of \mathcal{T}_{i} is $\mathcal{R}\left(\mathcal{T}_{i}\right)=i$. Again, this is trivially true for \mathcal{T}_{0}. It is easy to see that $\mathcal{R}\left(\mathcal{T}_{i}\right)=1+\mathcal{R}\left(\mathcal{T}_{i-1}\right)$, because \mathcal{T}_{i-1} is the child with the largest radius. Inductively, it follows that $\mathcal{R}\left(\mathcal{T}_{i}\right)=i$.
By definition, when cutting of the subtree \mathcal{T}_{i-1} from \mathcal{T}_{i}, the resulting tree is again \mathcal{T}_{i-1}. Let $\mathcal{C}: \mathcal{T}_{i} \mapsto$ \mathcal{T}_{i-1} denote this cutting operation. For all $i>0$, we thus have that $\mathcal{C}\left(\mathcal{T}_{i}\right)=\mathcal{T}_{i-1}$. We will now start a request at the single node v with a distance of i from the root in \mathcal{T}_{i}. On its path to the root, the request passes nodes that are roots of the trees $\mathcal{T}_{1}, \ldots, \mathcal{T}_{i}$. All of those nodes become children of the

Figure 2: The trees $\mathcal{T}_{0}, \ldots, \mathcal{T}_{3}$.
new root v according to the Ivy protocol. The new children lose their largest "child" subtree in the process, thus the children of node v have the structures $\mathcal{C}\left(\mathcal{T}_{1}\right), \ldots, \mathcal{C}\left(\mathcal{T}_{i}\right)=\mathcal{T}_{0}, \ldots, \mathcal{T}_{i-1}$. Hence, the structure of the tree does not change due to the request and all subsequent requests can also cost i steps. Since $n=2^{i}$, each request costs exactly $\log n$.

