## Network Algorithms, Summer Term 2014 Problem Set 4 – Sample Solution

## **Exercise 1: Deterministic Maximal Independent Set Construction**

- 1. All the nodes in  $V_0$  keep the color from the  $(\Delta + 1)$ -coloring of  $G[V_0]$ . Clearly, this does not create any conflicts in G. For the nodes in  $V_1$ , we iterate through all the  $\Delta + 1$  colors. When considering color x, all nodes that have color x in the  $(\Delta + 1)$ -coloring of  $G[V_1]$ , select the minimum possible available color (note that these nodes always form an independent set of G). Given on  $(\Delta + 1)$ -coloring of  $G[V_0]$  and  $G[V_1]$ , this allows to compute a  $(\Delta + 1)$ -coloring of G in  $\Delta + 1$  rounds.
- 2. For some bit string  $\beta$  of length k (for  $k \ge 0$ ), let  $V_{\beta}$  be the set of nodes with an identifier whose bit representation starts with  $\beta$ . Assume that all identifiers can be represented by using at most  $\ell = O(\log n)$  bits. For some given  $\beta$  of length k, we would like to color the graph  $G[V_{\beta}]$  induced by the nodes in  $V_{\beta}$  using  $\Delta + 1$  colors. We prove that this is possible in  $(\ell - k)(\Delta + 1)$  rounds by induction on  $(\ell - k)$ . For  $k = \ell$ , this is clear because for every bit string of length  $k = \ell$ , there is at most one node in  $V_{\beta}$  and thus  $G[V_{\beta}]$  can directly be colored with a single color. For the induction step, consider a bit string  $\beta$  of length k and let  $\beta_0$  and  $\beta_1$  be the two possible (k + 1)-bit extensions of  $\beta$ . By induction, we can color  $G[V_{\beta_0}]$  and  $G[V_{\beta_1}]$  with  $\Delta + 1$  colors in  $(\ell - k - 1)(\Delta + 1)$  rounds (we can color both of these graphs in parallel!). Using the ideas from the previous exercise, we can then color  $G[V_{\beta}]$  in  $\Delta + 1$  more rounds. Altogether, we get an algorithm that colors every graph with  $\Delta + 1$  colors in  $\ell(\Delta + 1) = O(\Delta \log n)$  rounds.
- 3. Assume that the network graph G has maximum degree  $\Delta$ . We can color G with  $\Delta + 1$  colors in  $O(\Delta \log n)$  rounds. Based on this coloring, we can compute an MIS in  $O(\Delta)$  additional rounds as follows. Initially, the MIS is empty. We iterate through the  $\Delta + 1$  colors. When taking care of color x, all nodes with color x that do not yet have a neighbor in the MIS, join the MIS. Overall, we get an MIS algorithm with time complexity  $O(\Delta \log n)$ .
- 4. The distributed greedy algorithm adds a node u to the MIS if and only if u has the largest identifier among all non-decided neighboring nodes. We change this rule and always give priority to undecided nodes with larger degrees (ties are broken by IDs). In each phase, the largest ID node, among the nodes with the largest remaining degree  $(\geq k)$ , joins the MIS. Hence, as long as there is a node with degree more than k, at least k + 1 nodes are removed from the graph in every phase. We therefore need at most O(n/k) rounds until no node of degree larger than k remains.
- 5. Recall that we assumed that the nodes know n. We fix some k and let the modified greedy algorithm run until there are no nodes of degree more than k remaining. By the observations of Question 4), this requires O(n/k) rounds. For the remaining graph with maximum degree k, we run the algorithm of Question 3). The running time of that algorithm is  $O(k \log n)$ . Choosing  $k = \sqrt{n/\log n}$  we get a deterministic MIS algorithm that computes an MIS in time  $O(\sqrt{n \log n})$ .