Distributed Systems, Summer Term 2015 Problem Set 1

The assignment is due on Tuesday, May 5, 2015, 14.15h. You can either hand it in electronically (yannic.maus@cs.uni-freiburg.de) or hand it in at the tutorial session itself.

Exercise 1: Schedules

Given are three nodes v_{1}, v_{2} and v_{3} which are connected via FIFO channels, that is, (two) messages, which are sent from some node i to the some node j, will arrive at node j in the order in which node i released the messages.
Devise one possible schedule S which is consistent with the following local restrictions to the three nodes.

- $S \mid 1=s_{1,3} s_{1,3} r_{1,2} r_{1,3} s_{1,2} r_{1,2} s_{1,3}$,
- $S \mid 2=s_{2,3} s_{2,1} r_{2,1} s_{2,1}$,
- $S \mid 3=r_{3,2} r_{3,1} s_{3,1} r_{3,1} r_{3,1}$.
$s_{i, j}$ denotes the send event from node i to node j and $r_{j, i}$ denotes the event that node j receives a message from node i.

Exercise 2: (Variations) of Two Generals

In the lecture we considered the (deterministically unsolvable) Two Generals consensus problem:

- two deterministic nodes, synchronuous communication, unreliable messages,
- input: 0 or 1 for each node,
- output: each node needs to decide either 0 or 1 ,
- agreement: both nodes must output the same decision (0 or 1),
- validity: if both nodes have the same input $x \in\{0,1\}$ and no messages are lost, both nodes output x,
- termination: both nodes terminate in a bounded number of rounds.

In this exercise we consider three modifications of the model. For each of them, either give a (deterministic) algorithm or state a proof which shows that the variation cannot be solved deterministically.
a) There is the guarantee that within the first 7 rounds at least one message in each direction succeeds.
b) There is the guarantee that within the first 7 rounds at least one message succeeds.
c) Let $k \in \mathbb{N}$ be a natural number. The input for each node is a number $x_{i} \in\{0, \ldots, k\}$.

Goal: If no message gets lost and both have the same input $x \in\{0, \ldots, k\}$, both have to output x. In all other cases the nodes should output numbers which do not differ by more than one. The algorithm still has to terminate in a finite number of rounds.

Hint: This problem is solvable. Ideas from the lecture might help.

Exercise 3: Asynchronous Message Passing, BFS Algorithm

In the lecture we introduced the distributed Bellman-Ford Algorithm for constructing a BFS tree in an asynchronous message passing system. The time complexity of the algorithm is $\mathcal{O}(D)$ and the message complexity is $\mathcal{O}(m n)$, where D is the diameter of the graph, n the number of nodes and m the number of edges.
The number of edges in any graph is in $\mathcal{O}\left(n^{2}\right)$, which implies an upper bound of $\mathcal{O}\left(n^{3}\right)$ on the number of messages. Find a graph and an execution of the algorithm in which $\Theta\left(n^{3}\right)$ messages are sent and explain your solution.

