
Albert-Ludwigs-Universität Freiburg

Exercises
Distributed Systems: Part 2
Summer Term 2015

6. Distributed Concurrency Control and Replication

Anas Alzoghbi

Department of Computer Science

Databases and Information Systems

Präsentationstitel 2

Exercise 1

1- Verify whether or not the schedules are serializable

 S1 : R1A W1A R2A W2A
◦ T1 T2

 S2 : R2B W2B R1B W1B
◦ T2  T1

 S1 : R1A W2A
◦ T1 T2

 S2 : R3B W1B R2C W3C
◦ T2 T3 T1

Präsentationstitel 3

Exercise 1

1- Verify whether or not the schedules are serializable

 S1 : R1A R3A R3B W3A W3B R2B
◦ T1 T3 T2

 S2 : R4D W4D R1D R2C R4C W4C
◦ T2 T4 T1

 S1 : W1A c1 R3A R3B c3 W2B c2
◦ T1 T3 T2

 S2 : W2C c2 R4C R4D c4 W1D c1
◦ T2 T4 T1

Präsentationstitel 4

Exercise 1

2- Demonstrate that applying Distributed 2PL prevents non
serializable schedules.

 S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
◦ S1 : T1 waits for the last operation in S2

◦ S2 : T2 waits for the last operation in S1

 S1 : R1A W2A

S2 : R3B W1B R2C W3C
◦ S1: T1 waits for W1B from S2

◦ S2: T3 cannot unlock until the end

 Even locally on S2 not applicable!

Präsentationstitel 5

Exercise 1

2- Demonstrate that applying Distributed 2PL prevents non
serializable schedules.

 S1 : R1A R3A R3B W3A W3B R2B

S2 : R4D W4D R1D R2C R4C W4C
◦ S1: T1 waits for R1D from S2

◦ S2: T4 cannot unlock until the end

 Even locally on S2 not applicable!

 S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1
◦ Local commit violate global 2PL protocols if they went through. At c1,

the lock on A can’t be released since T1 On S2 has not yet claimed all of
its locks

Präsentationstitel 6

Exercise 1

2- Demonstrate that applying Distributed Timestamp Protocol
prevents non serializable schedules.

 S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
◦ Z(T1)< Z(T2): So R1B performs a read on B which has been written to by

a "later" transaction before (W2B)

 S1 : R1A W2A

S2 : R3B W1B R2C W3C
◦ Z(T1)< Z(T3), so W1B performs a write on B which has been read to by a

"later" transaction before (R3B)

Präsentationstitel 7

Exercise 1

2- Demonstrate that applying Distributed Timestamp

protocol prevents non serializable schedules.

 S1 : R1A R3A R3B W3A W3B R2B

S2 : R4D W4D R1D R2C R4C W4C
◦ Z(T1)< Z(T4) < Z(T3), so R1D performs a read on D which has been

written to by a "later" transaction before (W4D)

 S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1
◦ Z(T1))< Z(T2) < Z(T3) < Z(T4) so W2B performs a write on B which has

been read by a "later" transaction before (R3B).

◦ The same problem occurs for W1D and R4D.

Präsentationstitel 8

Exercise 1

3- Check whether or not the schedules are rigorous

(Commits should occur before any conflicting operation!)

(i) Commits at the global end of a transaction

Then all schedules are not rigorous, since conflict pairs exist
before abort or commit

 S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B

 S1 : R1A W2A

S2 : R3B W1B R2C W3C

 S1 : R1A R3A R3B W3A W3B R2B

S2 : R4D W4D R1D R2C R4C W4C

Präsentationstitel 9

Exercise 1

3- Check whether or not the schedules are rigorous

(Commits should occur before any conflicting operation!)

(ii) Commit as soon as possible after the local end

 S1 : R1A W1A c1 R2A W2A c1 (rigorous)

S2 : R2B W2B c2 R1B W1B c1 (rigorous)

 S1 : R1A c1 W2A c2 (rigorous)

S2 : R3B W1B c1 R2C c2 W3C c3 (not rigorous)

 S1 : R1A c1 R3A R3B W3A W3B c3 R2B c2 (rigorous)

S2 : R4D W4D R1D c1 R2C c2 R4C W4C c4 (not rigorous)

Präsentationstitel 10

Exercise 1

3- Check whether or not the schedules are rigorous

 S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1

All commits happen before any conflicting operation

 rigorous

Präsentationstitel 11

Exercise 1

3- Check whether or not the schedules are commit-deferred.

(i) Commits at the global end of a transaction

 By definition all schedules are commit deferred

Präsentationstitel 12

Exercise 1

3- Check whether or not the schedules are commit-deferred.

(ii) Commit as soon as possible after the local end

 S1 : R1A W1A c1 R2A W2A c1

S2 : R2B W2B c2 R1B W1B c1

T1 at S1 commits before T1 at S2 Not commit deferred

 S1 : R1A c1 W2A c2

S2 : R3B W1B c1 R2C c2 W3C c3

 Commit deferred

 S1 : R1A c1 R3A R3B W3A W3B c3 R2B c2

S2 : R4D W4D R1D c1 R2C c2 R4C W4C c4

T1 at S1 commits before T1 at S2 Not commit deferred

Präsentationstitel 13

Exercise 1

3- Check whether or not the schedules commit-deferred.

 S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1

T1 at S1 commits before T1 at S2 Not commit deferred

Präsentationstitel 14

Exercise 1

4- Demonstrate that applying Ticket-based concurrency control
prevents non-serializable schedules

 S1 : R1I1 W1I1 R1A W1A R2I1 W2I1 R2A W2A

S2 : R2I2 W2I2 R2B W2B R1I2 W1I2 R1B W1B

Local detection is not possible, but the access to I1 and I2

happens in different order. Using dependency graph on the
tickets we can detect the cycle: T1 T2, T2 T1

Präsentationstitel 15

Exercise 1

4- Demonstrate that applying Ticket-based concurrency control
prevents non-serializable schedules

 S1 : R1I1 W1I1 R1A R2I1 W2I1 W2A

S2 : R3B R1I2 W1I2 W1B R2I2 W2I2 R2C W3C

Tickets introduce T1T2 order on S2 which makes the conflict
explicit and locally detectable at S2 conflict is locally
detectable

Präsentationstitel 16

Exercise 1

4- Demonstrate that applying Ticket-based concurrency control
prevents non-serializable schedules

 S1 : R1A R3A R3B W3A W3B R2B

S2 : R4D W4D R1D R2C R4C W4C

Like in the previous case, ticket introduce T1T2 order on S2,
making the conflict locally detectable.

 S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1

Like in the first case, no local detection is possible, but a
dependency graph on the tickets detects the conflict.

Präsentationstitel 17

Exercise 2

Keeping consistency in replicated data is a key issue, for which
several approaches exist

a) Compare the combinations of update primary copy/update
anywhere and eager/lazy propagation in terms of
availability, consistency and cost for read/write operations

Präsentationstitel 18

Exercise 2

Keeping consistency in replicated data is a key issue, for which
several approaches exist

a) Compare the combinations of update primary copy/update
anywhere and eager/lazy propagation in terms of
availability, consistency and cost for read/write operations
◦ All eager methods suffer from write availability and performance

problems. Consistency is strong. Lazy has opposite behavior

◦ Primary copy might lead to bottleneck, Write anywhere don’t. but
can lead to deadlock or can provide very weak guarantees.

Präsentationstitel 19

Exercise 2

Keeping consistency in replicated data is a key issue, for which
several approaches exist

b) What kind of consistency problems could occur with a read
quorum 2/3N+1 and a write quorum of N/3+1?

Präsentationstitel 20

Exercise 2

Keeping consistency in replicated data is a key issue, for which
several approaches exist

b) What kind of consistency problems could occur with a read
quorum 2/3N+1 and a write quorum of N/3+1?

 Since the write quorum is below N/2+1, two write operations
cannot be performed concurrently without excluding each
other (no majority of participants needed). As a results,
conflicting write operations are possible.

 On the other hand, the read and write quora do form a
majority, so the are no read/write consistency issues.

Präsentationstitel 21

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

a) Provide examples of consistency problems/anomalies that
could occur!

Präsentationstitel 22

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

a) Provide examples of consistency problems/anomalies that
could occur!

 Each replica may perform update on its data elements
independently and will later propagate the outcome to other
replicas. This way, the updates have no ordering guarantee.
Without any additional measures, write may get lost, dirty
writes may occur, ...

Präsentationstitel 23

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

b) In current cloud storage systems, Latest write wins is a
popular approach to resolve concurrent updates. Explain the
problems that may occur when using physical/wall-clock
timestamps!

Präsentationstitel 24

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

b) In current cloud storage systems, Latest write wins is a
popular approach to resolve concurrent updates. Explain the
problems that may occur when using physical/wall-clock
timestamps!

 Wall/physical clocks cannot be kept fully in global sync, and
they might not even be monotonic (meaning that they might
jump backwards). As a result, older results make overtake
newer results, essentially invalidating the Last Write Wins
guarantee.

Präsentationstitel 25

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

c) Describe an approach that uses logical clocks to handle such
concurrent updates

Präsentationstitel 26

Exercise 3

Eventual consistency provides high availability and scalability,
but limits consistency

c) Describe an approach that uses logical clocks to handle such
concurrent updates

 Vector clocks are being used to denote timestamps/versions.
Each update is performed specifying the base version and
leads to an increase in the vector clock. A partially
ordered/graph/branching history is built when performing
concurrent updates. Reconciliation can be performed at the
application level, similar to merging in a version control
system.

Präsentationstitel 27

Exercise 3

Präsentationstitel 28

Exercise 4

 Different consistency models provide different tradeffos
between availability and consistency

a) Explain why preventing lost updates can lead to
unavailability

Präsentationstitel 29

Exercise 4

 Different consistency models provide different tradeffos
between availability and consistency

a) Explain why preventing lost updates can lead to
unavailability

T1 : R(X; 100)W(X; 100 + 20 = 120)

T2 : R(X; 100)W(X; 100 + 30 = 130)
 Regardless of whether x = 120 or x = 130 is chosen by a replica, the

database state could not have arisen from any serial execution of T1 and
T2. To prevent this, either T1 or T2 should not have committed. Each
client's respective server might try to detect that another write occurred,
but this requires knowing the version of the latest write to x. This is only
possible by communicating

Präsentationstitel 30

Exercise 4

 Different consistency models provide different tradeffos
between availability and consistency

b) How can you guarantee Read Committed, but stay available?
Describe an approach that uses logical clocks to handle such
concurrent updates

Präsentationstitel 31

Exercise 4

 Different consistency models provide different tradeffos
between availability and consistency

b) How can you guarantee Read Committed, but stay available?
Describe an approach that uses logical clocks to handle such
concurrent updates

 If each client never writes uncommitted data to shared copies
of data, then transactions will never read each others' dirty
data. As a simple solution, clients can buffer their writes until
they commit, or, alternatively, can send them to servers, who
will not deliver their value to other readers until notified that
the writes have been committed

