
Universität Freiburg Georges-Köhler Allee, Geb. 51
Institut für Informatik D-79110 Freiburg
Prof. Dr. P. Fischer/Prof. Dr. F. Kuhn peter.�scher@informatik.uni-freiburg.de

Exercises

Distributed Systemes: Part 2
Summer Term 2015

21.7.2015
Solution Proposal

6. Exercise sheet: Distributed Concurrency Control and Replication

Exercise 1

Consider the following local schedules:

• S1 : R1A W1A R2A W2A
S2 : R2B W2B R1B W1B

• S1 : R1A W2A
S2 : R3B W1B R2C W3C

• S1 : R1A R3A R3B W3A W3B R2B
S2 : R4D W4D R1D R2C R4C W4C

• S1 : W1A c1 R3A R3B c3 W2B c2
S2 : W2C c2 R4C R4D c4 W1D c1

(1) Verify whether or not the schedules are serializable.

(2) Demonstrate that applying Distributed 2PL/Timestamp Protocol prevents non-serializable schedules.

(3) Check whether or not the schedules are rigourous and commit-deferred.

(4) Demonstrate that applying Ticket-based concurrency control prevents non-serializable schedules.

Solution:

(1) � locally yes, globally no, S1: T1 → T2, S2: T2 → T1

� locally yes, globally no, S1: T1 → T2, S2: T2 → T3 → T1

� locally yes, globally no, S1: T1 → T3 → T2, S2: T2 → T4 → T1

� locally yes, globally no, S1: T1 → T3 → T2, S2: T2 → T4 → T1

(2) Distributed 2PL: If a local transaction reaches the point when it would start unlocking, it would ask the other sites running
the same transaction if they also reached this point. If not, it would have to wait

� not possible, since either transaction cannot make progress after the �rst two steps

� not possible, since R11 and R32 cannot make progress after the �rst step

� not possible, since R11 and R42 cannot make progress after the �rst and second step, respectively

� local commit violate global 2 PL protocols if they went through. At c1, the lock on A cannot be released since T12 has not
yet claimed all its locks

Timestamp Protocol: Abort transactions, if a con�icting access is performed with a later timestamp. Without restricting
generality, we always assume that S1 start is transactions earlier than S2

� TS1 < TS2, so R1B performs a read on B which has been written to by a "later" transaction before (W2B)

� TS1 < TS3, so W1B performs a write on B which has been read to by a "later" transaction before (R3B)

� TS1 < TS4 < TS3, so R1D performs a read on D which has been written to by a "later" transaction before (W4D)

� TS1 < TS2 < TS3 < TS4, so W2B performs a write on B which has been read by a "later" transaction before (R3B). The
same problem occurs for W1D and R4D.



(3) The last case is easiest: The schedules are rigorous since all a commit happens before any con�icting operation. It is not
commit-deferred since e.g. T11 commits before T12.

In �rst three cases, no commit is speci�ed. We therefore have the options to either perform the commit at (i) the global end of
a transaction or (ii) as soon as possible after the local end. (i) would make the schedules commit-deferred (by de�nition), but
not rigorous, since con�ict pairs exist before abort or commit. (ii) would make some of the schedules rigorous, but not all of
them.

(4) Tickets are expressed by adding a Ticket access into the local schedules of global transactions. When "locking" the ticket (which
we denote as Ij for server j) we add an explicit Read/Write Operation.

�

S1 : R1I1 W1I1 R1A W1A R2I1 W2I1 R2A W2A
S2 : R2I2 W2I2 R2B W2B R1I2 W1I2 R1B W1B

In this case, no local detection is possible, but the

access to I1 and I2 happens in di�erent order. Using dependency graph on the tickets we can detect the cycle.

�

S1 : R1I1 W1I1 R1A R2I1 W2I1 W2A
S2 : R3B R1I2 W1I2 W1B R2I2 W2I2 R2C W3C

Tickets introduce T1T2 order on S2 which makes the

con�ict explicit and locally detectable at S2, since the execution without ticket yields the order T2 → T3 → T1

� Like in the previous case, we ticket introduce T1T2 order on S2, making the con�ict locally detectable.

� Like in the �rst case, no local detection is possible, but a depedency graph on the the tickets detects the con�ict.

Exercise 2

Keeping consistency in replicated data is a key issue, for which several approaches exist

a) Compare the combinations of update primary copy/update anywhere and eager/lazy propagation in terms
of availability, consistency and cost for read/write operations

b) What kind of consistency problems could occur with a read quorum 2
3N+1 and a write quorum of N/3+1?

Solution:

a) � All eager methods will su�er from write availability and write performancy problems, since all replicas
need to be contacted for a commit. Consistency, on the other hand, is strong. Lazy methods show the
opposite behavior.

� Primary copy approaches allow simple updates (only local locking, fast bulk propagation), but may
become the bottleneck from due to contention for writing and replicating (mostly in eager, though)

� Write anywhere method are �exible, do not provide a single bottleneck, but may run into deadlock due
to distributed locking (eager) or can only provide very weak guarantees.

� ...

b) Since the write quorum is below N/2+1, two write operations cannot be performed concurrently without
excluding each other (no majority of participants needed). As a results, con�icting write operations are
possible. On the other hand, the read and write quora do form a majority, so the are no read/write
consistency issues.

Exercise 3

Eventual consistency provides high availability and scalability, but limits consistency

a) Provide examples of consistency problems/anomalies that could occur!

b) In current cloud storage systems, Latest write wins is a popular approach to resolve concurrent updates.
Explain the problems that may occur when using physical/wall-clock timestamps!

c) Describe an approach that uses logical clocks to handle such concurrent updates

Solution:

a) Each replica may perform update on its data elements independently and will later propagate the outcome
to other replicas. This way, the updates have no ordering guarantee. Without any additional measures,
write may get lost, dirty writes may occur, ...

b) Wall/physical clocks cannot be kept fully in global sync, and they might not even be monotonic (meaning that
they might jump backwards). As a result, older results make overtake newer results, essentially invalidating
the Last Write Wins guarantee.

c) Vector clocks are being used to denote timestamps/versions. Each update is performed specifying the base
version and leads to an increase in the vector clock. A partially ordered/graph/branching history is built
when performing concurrent updates. Reconciliation can be performed at the application level, similar to
merging in a version control system.



Exercise 4

Di�erent consistency models provide di�erent tradeo�s between availability and consistency

a) Explain why preventing lost updates can lead to unavailability

b) How can you guarantee Read Committed, but stay available?

Solution:

a) Consider two clients who submit the following T1 and T2 on opposite sides of a network partition which
both access a data item X:

T1 : R(X, 100)W (X, 100 + 20 = 120)

T2 : R(X, 100)W (X, 100 + 30 = 130)

Regardless of whether x = 120 or x = 130 is chosen by a replica, the database state could not have arisen
from any serial execution of T1 and T2. To prevent this, either T1 or T2 should not have committed. Each
client's respective server might try to detect that another write occurred, but this requires knowing the
version of the latest write to x. This is only possible by communicating, since each side may make progress
on its own. Formally speaking, we would now require Linearizability, which is the consistency level speci�ed
for the CAP theorem.

b) If each client never writes uncommitted data to shared copies of data, then transactions will never read each
others' dirty data. As a simple solution, clients can bu�er their writes until they commit, or, alternatively,
can send them to servers, who will not deliver their value to other readers until noti�ed that the writes
have been committed. Unlike a lock-based implementation, this implementation does not provide recency
or monotonicity guarantees but it satis�es the implementation-agnostic de�nition.

3


