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Consensus #4: Synchronous Systems
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e One can sometimes tell if a processor had crashed
— Timeouts
— Broken TCP connections

e Can one solve consensus at least in synchronous systems?
e Model

— All communication occurs
in synchronous rounds

— Complete communication graph

Distributed Systems, SS 2015 Fabian Kuhn



Crash Failures
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e Broadcast: Send a message to all nodes in one round
— At the end of the round everybody receives the message a
— Every process can broadcast a value in each round

e Crash Failures: A broadcast can fail if a process crashes

— Some of the messages may be lost, i.e., they are never received
d d

Faulty
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Process disappears after failure
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Round 1 Round 2 Round3 Round4 Round5
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Consensus Repetition
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e [nput: everybody has an initial value
e Agreement: everybody must decide on the same value

Start | Finish

e Validity conditon: If everybody starts with the same value,
everybody must decide on that value
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A Simple Consensus Algorithm

UNI
I

FREIBURG

Each process:
1. Broadcast own value

2. Decide on the minimum of all received values

Including the
own value

Note that only
one round is
needed!
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e Broadcast values and decide on minimum = Consensus!

e Validity condition is satisfied: If everybody starts with the
same initial value, everybody sticks to that value (minimum)

0,1,2,3,4

0
0,1,2,3,4 / A 0,123,4
4)
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Execution With Failures
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e The failed processor doesn’t broadcast its value to all processors
e Decide on minimum —> No consensus!

fail
0

01,234 1,2,3,4
1 0

i\) l'\%)0,1,2,3,4

1,2,3,4
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f -Resilient Consensus Algorithm
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e |f an algorithm solves consensus for f failed processes, we say it
is an f-resilient consensus algorithm

e Example: The input and output of a 3-resilient consensus alg.

Start Finish

NN
\ 3/ \ 1

e Refined validity condition:
All processes decide on a value that is available initially
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An f-Resilient Consensus Algorithm

Each process:

Round 1:
Broadcast own value

Round 2 to round f + 1:
Broadcast the minimum of the received values
unless it has been sent before

End of round f + 1:
Decide on the minimum value received

Distributed Systems, SS 2015 Fabian Kuhn
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An f-Resilient Consensus Algorithm
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e Example: f = 2 failures, f +1 = 3 rounds needed

Distributed Systems, SS 2015
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An f-Resilient Consensus Algorithm
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e Round 1: Broadcast all values to everybody

JFailure 1

1,2,3,4

D

\
1,2,3,4

Distributed Systems, SS 2015

1 ,2,3,4

3)
0,1,2,3,4

Fabian Kuhn

13



An f-Resilient Consensus Algorithm
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e Round 2: Broadcast all new values to everybody

Q Failure 1
1,2,3,4
)
JFailureZ
0,1,2,3,4
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An f-Resilient Consensus Algorithm
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e Round 3: Broadcast all new values to everybody

Q Failure 1

0,1,2,3,4

l )

1

X

@

0,1,2,3,4

l\z) Q Failure 2
0,1,2,3,4
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An f-Resilient Consensus Algorithm
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e Decide on minimum =2 Consensus!

Q Failure 1

0,1,2,3,4 0,1,2,3,4

X

k\o) Q Failure 2
0,1,2,3,4
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Analysis
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e |fthere are f failures and f + 1 rounds, then there is a round
with no failed process

e Example: 5 failures, 6 rounds:

1 2 3 4 5 6
Q O |V |9 O O
J
QO O QO O [V O
O O
_ Q| 9 O

No failure ol lol ol ol 1o o
Q| |9 Q| O
\\)/ \k); \\)) \\)) ‘\) \k);
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Analysis
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e At the end of the round with no failure

— Every (non faulty) process knows about all the values of all the other
participating processes

— This knowledge doesn’t change until the end of the algorithm
e Therefore, everybody will decide on the same value

e However, as we don’t know the exact position of this round,
we have to let the algorithm execute for f + 1 rounds

e Validity: When all processes start with the same input value,
then consensus is that value
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Theorem
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Beorem)

If at most f < n — 2 of n nodes of a synchronous
message passing system can crash, at least f + 1
rounds are needed to solve consensus.

Proof idea:
e Show that f rounds are not enoughifn = f + 2

e Before proving the theorem, we consider a

“worst-case scenario”: In each round one of the processes fails

Distributed Systems, SS 2015 Fabian Kuhn
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Lower Bound on Rounds: Intuition
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Round 1 2
Pm
D; Q q
X
P ‘\)/

Distributed Systems, SS 2015

e Before process p; fails, it sends its
value a only to one process p,,

e Before process p, fails, it sends
its value a to only one process p.,
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Lower Bound on Rounds: Intuition
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Round 1 2 3 f
e Atthe end of
@ round f only one
@ process p,, knows
o about value a
J
/0 Pn
a
Pr |J]
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Lower Bound on Rounds: Intuition
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Round 1

Distributed Systems, SS 2015

f decide

' N G

b
@

/0

Fabian Kuhn

Pn

Process p,, may
decide on a and all
other processes
may decide on
another value b

f rounds are not
enough

— atleast f + 1
rounds are needed
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Lower Bound on Rounds: Proof
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Recall (from Chapters 1 & 2):

e For the impossibility proof of the two generals problem, we
used an indistinguishability proof

e Execution E is indistinguishable from execution E' for some
node v if v sees the same things in both executions.

— same inputs and messages (schedule)

e |If E isindistinguishable from E’ for v, then v does the same
thing in both executions.
— We denoted this by E|v = E'|v

Similarity:
* Call E; and E; similar if E;|v = E;|v for some node v
Ei ~ E] — El-|v = E]|v
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Lower Bound on Rounds: Proof

UNI
I

FREIBURG

Similarity Chain:
e Consider a sequence of executions E4, E5, E5, ..., E7 such that
‘v’iZ 1: Ei Nvi Ei+1

— any two consecutive executions E; and E; .1 are indistinguishable for
some node v; (we assume that v; does not crash in E; and E; 1)

e Indistinguishability:
Vi =1 : Node v; decides on the same value in E; and E; ¢

e Agreement:
Vi =1 : Allnodes decide on the same value in E; and E;_ 4

 Hence, all executions Ey, ..., E+ have the same decision value!

e @Goal:
E;: no crashes, all inputs are 0; E+: no crashes, all inputs are 1
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough

©C O O O O O

N A N A N A N A

round 1 round 2 round 3 round 4
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Lower Bound on Rounds: Proof _

Example: f =4,n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof

Example: f =4, n =6

C O O O QO O

Need to show: 4 rounds are not enough
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round 1 round 2 round 3 round 4
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Lower Bound on Rounds: Proof _

Example: f =4,n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6
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round 1
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Lower Bound on Rounds: Proof
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Example: f =4,n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof

Example: f =4, n =6
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Lower Bound on Rounds: Proof :

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough

_e O O O O

N A N A N A N A

round 1 round 2 round 3 round 4
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Lower Bound on Rounds: Proof

Example: f =4, n =6  Need to show: 4 rounds are not enough
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Lower Bound on Rounds: Proof

Example: f =4, n =6  Need to show: 4 rounds are not enough
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round 1 round 2 round 3 round 4
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough

o N = = N = N =
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round 1 round 2 round 3 round 4
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Lower Bound on Rounds: Proof
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Example: f =4, n =6  Need to show: 4 rounds are not enough
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round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 52



Lower Bound on Rounds
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meoremw

If at most f < n — 2 of n nodes of a synchronous
message passing system can crash, at least f + 1
rounds are needed to solve consensus.

Proof:

e Similarity chain starting with fault-free all-zeroes execution and
ending with fault-free all-ones execution

* |n all executions, at most one crash per round

e Construction works as long as there are at least 2 non-faulty
nodes in each execution (n = f + 2)

e Validity: all-zeroes = decision 0; all-ones = decision 1
Similarity Chain: same decision in all executions
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Arbitrary Behavior
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e The assumption that processes crash and stop forever is

Probably Are you there?
not... @

sometimes too optimistic

 Maybe the processes fail
and recover:

e Maybe the processes are
damaged:

Distributed Systems, SS 2015
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Consensus #5: Byzantine Failures

e Different processes may receive different values
e A Byzantine process can behave like a crash-failed process
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faulty
node
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After Failure, Node Remains in Network
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Round 1 Round 2 Round 3 Round4 Round?5
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Consensus with Byzantine Failures
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e Again: If an algorithm solves consensus for f failed processes,
we say it is an f-resilient consensus algorithm

e Validity: If all non-faulty processes start with the same value,
then all non-faulty processes decide on that value

— Note that in general this validity condition does not guarantee that the
final value is an input value of a non-Byzantine process

— However, if the input is binary, then the validity condition ensures that
processes decide on a value that at least one non-Byzantine process had
initially

e Obviously, any f-resilient consensus algorithm requires at least
f + 1 rounds (follows from the crash failure lower bound)

e How large can f be...? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?
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Impossibility
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Beorem)
There is no f-resilient Byzantine consensus
algorithm for n nodes for f = n/3

Proof outline
* First, we prove the 3 node case
— not possible for f =1

e The general case can then be proved by reduction
from the 3 node case

— Given an algorithm for n node and f faults for f = n/3,
we can construct a 1-resilient 3-node algorithm

Distributed Systems, SS 2015 Fabian Kuhn
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The 3 Node Case
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Lemma
There is no 1-resilient algorithm for 3 nodes

Proof: Intuition:
Byzantine

e Node A may also receive
information from C about B’s
messages to C

e Node A may receive conflicting
information about B from C and
about C from B (the same for Cl!)

e |tisimpossible for Aand Cto
decide which information to
base their decision on!
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Proof Sketch :
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e Assume that both A and C have input
0. If they decided 1, they could violate
the validity condition 2 A and C must
decide O independent of what B says

e Similary, A and C must decide 1 if
their inputs are 1

e We see that the processes must base
their decision on the majority vote

e |fA’sinputisO and B tells A o \

that its input is 0 = A decides O @
e |[fC’sinputis1andBtellsC

that its input is 1 = C decides 1 5@3
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The General Case
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e Assume for contradiction that there is an f-resilient algorithm
A for n nodes, where f = n/3

 We use this algorithm to solve consensus for 3 nodes where
one node is Byzantine!

e For simplicity assume that n is divisible by 3
 We let each of the three processes simulate n/3 processes
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The General Case
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* One of the 3 nodes is Byzantine = its n/3 simulated nodes
may all behave like Byzantine nodes

e Since algorithm A tolerates n/3 Byzantine failures, it can still
reach consensus
— We solved the consensus problem for three processes!

Consensus! Consensus!
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Cons. #6: Simple Byzantine Agreement Alg. _=.
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e Can the nodes reach consensus ifn > 3f7?
e Asimpler question: Whatifn =4and f =17
e The answer is yes. It takes two rounds:

Round 1: Exchange all values Round 2: Exchange received info

1,.,2,3 1,1,3,0
2,1,2,3

0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

2,1,.,3 = = 0,1,2,. 2,0,2,1
1,1,2,3
0,1,2,3

[matrix: one column for each original value, one row for each neighbor]
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Simple Byzantine Agreement Algorithm
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e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted
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Simple Byzantine Agreement Algorithm ;
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e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted

— The value of the Byzantine node is accepted iff it sends the same value to
at least two nodes in the first round.
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Simple Byzantine Agreement Algorithm ;
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e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted
— The value of the Byzantine node is accepted iff it sends the same value to
at least two nodes in the first round.

e Decide on minimum accepted value!

,. 1,1,3,0
K 2,1,2,3 >x,1,2,3
0,1,2,3
Consensus!
2,0,2,1 _= 0,3,1,3
x,1,2,3< 1,1,2,3 1,1,2,3 >x,1,2,3

0,1,2,3 2,1,2,3
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Simple Byzantine Agreement Algorithm ;
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e Does the algorithm still work in general forany f and n > 3f?
e Theanswerisno.Try f =2andn =7:

Round 1: Exchange all values Round 2: Exchange received info

Majority
says 0!

Majority
says 1!

 The problem is that g can say different things about what p
sent to q
— What is the solution to this problem?
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Simple Byzantine Agreement Algorithm

e The solution is simple: Again exchange all information!

* This way, the processes can learn that g gave inconsistent
information about p

* Hence, g can be excluded, and also p if it also gave
inconsistent information (about q).

e If f =2andn > 6, consensus can be reached in 3 rounds!

e |n fact, the following algorithm solves the problem
forany f and anyn > 3f:

Exchange all information for f 4+ 1 rounds
lgnore all processes that provided inconsistent information
Let all processes decide based on the same input

Distributed Systems, SS 2015 Fabian Kuhn
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Simple Byzantine Agreement Algorithm ;
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The proposed algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal
+ It only takes f + 1 rounds. This is even optimal for crash failures!
+ It works for any input and not just binary input

However, it has some considerable disadvantages:

— “lgnoring all processes that provided inconsistent information”
is not easy to formalize

— The size of the messages increases exponentially!
This is a severe problem. It is therefore worth studying whether
it is possible to solve the problem with small(er) messages
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