)

Chapter 6
Consensus

Distributed Systems
SS 2015
Fabian Kuhn

UNI
!

FREIBURG

Overview

UNI

FREIBURG

Introduction

Consensus #1: Shared Memory

Consensus #2: Wait-free Shared Memory

Consensus #3: Read-Modify-Write Shared Memory
Consensus #4: Synchronous Systems

Consensus #5: Byzantine Failures

Consensus #6: A Simple Algorithm for Byzantine Agreement
Consensus #7: The Queen Algorithm

Consensus #8: The King Algorithm

Consensus #9: Byzantine Agreement Using Authentication
Consensus #10: A Randomized Algorithm

Shared Coin

Slides by R. Wattenhofer (ETHZ)

Distributed Systems, SS 2015 Fabian Kuhn

Consensus #4: Synchronous Systems

UNI

FREIBURG

e One can sometimes tell if a processor had crashed
— Timeouts
— Broken TCP connections

e Can one solve consensus at least in synchronous systems?
e Model

— All communication occurs
in synchronous rounds

— Complete communication graph

Distributed Systems, SS 2015 Fabian Kuhn

Crash Failures

UNI
FREIBURG

e Broadcast: Send a message to all nodes in one round
— At the end of the round everybody receives the message a
— Every process can broadcast a value in each round

e Crash Failures: A broadcast can fail if a process crashes

— Some of the messages may be lost, i.e., they are never received
d d

Faulty

Distributed Systems, SS 2015 Fabian Kuhn 4

Process disappears after failure

UNI

FREIBURG

Round 1 Round 2 Round3 Round4 Round5

Distributed Systems, SS 2015 Fabian Kuhn

Consensus Repetition

UNI
I

FREIBURG

e [nput: everybody has an initial value
e Agreement: everybody must decide on the same value

Start | Finish

e Validity conditon: If everybody starts with the same value,
everybody must decide on that value

Distributed Systems, SS 2015 Fabian Kuhn 6

A Simple Consensus Algorithm

UNI
I

FREIBURG

Each process:
1. Broadcast own value

2. Decide on the minimum of all received values

Including the
own value

Note that only
one round is
needed!

Distributed Systems, SS 2015 Fabian Kuhn

UNI

Execution Without Failures

FREIBURG

e Broadcast values and decide on minimum = Consensus!

e Validity condition is satisfied: If everybody starts with the
same initial value, everybody sticks to that value (minimum)

0,1,2,3,4

0
0,1,2,3,4 / A 0,123,4
4)

Distributed Systems, SS 2015 Fabian Kuhn 8

Execution With Failures

UNI
I

FREIBURG

e The failed processor doesn’t broadcast its value to all processors
e Decide on minimum —> No consensus!

fail
0

01,234 1,2,3,4
1 0

i\) l'\%)0,1,2,3,4

1,2,3,4

Distributed Systems, SS 2015 Fabian Kuhn 9

f -Resilient Consensus Algorithm

UNI
I

FREIBURG

e |f an algorithm solves consensus for f failed processes, we say it
is an f-resilient consensus algorithm

e Example: The input and output of a 3-resilient consensus alg.

Start Finish

NN
\ 3/ \ 1

e Refined validity condition:
All processes decide on a value that is available initially

Distributed Systems, SS 2015 Fabian Kuhn 10

An f-Resilient Consensus Algorithm

Each process:

Round 1:
Broadcast own value

Round 2 to round f + 1:
Broadcast the minimum of the received values
unless it has been sent before

End of round f + 1:
Decide on the minimum value received

Distributed Systems, SS 2015 Fabian Kuhn

UNI
I

FREIBURG

An f-Resilient Consensus Algorithm

UNI
I

FREIBURG

e Example: f = 2 failures, f +1 = 3 rounds needed

Distributed Systems, SS 2015

Fabian Kuhn

12

An f-Resilient Consensus Algorithm

UNI
I

FREIBURG

e Round 1: Broadcast all values to everybody

JFailure 1

1,2,3,4

D

\
1,2,3,4

Distributed Systems, SS 2015

1 ,2,3,4

3)
0,1,2,3,4

Fabian Kuhn

13

An f-Resilient Consensus Algorithm

UNI

FREIBURG

e Round 2: Broadcast all new values to everybody

Q Failure 1
1,2,3,4
)
JFailureZ
0,1,2,3,4

Distributed Systems, SS 2015 Fabian Kuhn

14

An f-Resilient Consensus Algorithm

UNI
I

FREIBURG

e Round 3: Broadcast all new values to everybody

Q Failure 1

0,1,2,3,4

l)

1

X

@

0,1,2,3,4

l\z) Q Failure 2
0,1,2,3,4

Distributed Systems, SS 2015

Fabian Kuhn

15

An f-Resilient Consensus Algorithm

UNI

FREIBURG

e Decide on minimum =2 Consensus!

Q Failure 1

0,1,2,3,4 0,1,2,3,4

X

k\o) Q Failure 2
0,1,2,3,4

Distributed Systems, SS 2015 Fabian Kuhn

16

Analysis

UNI
I

FREIBURG

e |fthere are f failures and f + 1 rounds, then there is a round
with no failed process

e Example: 5 failures, 6 rounds:

1 2 3 4 5 6
Q O |V |9 O O
J
QO O QO O [V O
O O
_ Q| 9 O

No failure ol lol ol ol 1o o
Q| |9 Q| O
\\)/ \k); \\)) \\)) ‘\) \k);

Distributed Systems, SS 2015 Fabian Kuhn 17

Analysis

UNI
FREIBURG

e At the end of the round with no failure

— Every (non faulty) process knows about all the values of all the other
participating processes

— This knowledge doesn’t change until the end of the algorithm
e Therefore, everybody will decide on the same value

e However, as we don’t know the exact position of this round,
we have to let the algorithm execute for f + 1 rounds

e Validity: When all processes start with the same input value,
then consensus is that value

Distributed Systems, SS 2015 Fabian Kuhn 18

Theorem

UNI

FREIBURG

Beorem)

If at most f < n — 2 of n nodes of a synchronous
message passing system can crash, at least f + 1
rounds are needed to solve consensus.

Proof idea:
e Show that f rounds are not enoughifn = f + 2

e Before proving the theorem, we consider a

“worst-case scenario”: In each round one of the processes fails

Distributed Systems, SS 2015 Fabian Kuhn

19

Lower Bound on Rounds: Intuition

UNI
FREIBURG

Round 1 2
Pm
D; Q q
X
P ‘\)/

Distributed Systems, SS 2015

e Before process p; fails, it sends its
value a only to one process p,,

e Before process p, fails, it sends
its value a to only one process p.,

Fabian Kuhn 20

Lower Bound on Rounds: Intuition

UNI
I

FREIBURG

Round 1 2 3 f
e Atthe end of
@ round f only one
@ process p,, knows
o about value a
J
/0 Pn
a
Pr |J]

Distributed Systems, SS 2015 Fabian Kuhn 21

Lower Bound on Rounds: Intuition

UNI
I

FREIBURG

Round 1

Distributed Systems, SS 2015

f decide

' N G

b
@

/0

Fabian Kuhn

Pn

Process p,, may
decide on a and all
other processes
may decide on
another value b

f rounds are not
enough

— atleast f + 1
rounds are needed

22

Lower Bound on Rounds: Proof

UNI

FREIBURG

Recall (from Chapters 1 & 2):

e For the impossibility proof of the two generals problem, we
used an indistinguishability proof

e Execution E is indistinguishable from execution E' for some
node v if v sees the same things in both executions.

— same inputs and messages (schedule)

e |If E isindistinguishable from E’ for v, then v does the same
thing in both executions.
— We denoted this by E|v = E'|v

Similarity:
* Call E; and E; similar if E;|v = E;|v for some node v
Ei ~ E] — El-|v = E]|v

Distributed Systems, SS 2015 Fabian Kuhn 23

Lower Bound on Rounds: Proof

UNI
I

FREIBURG

Similarity Chain:
e Consider a sequence of executions E4, E5, E5, ..., E7 such that
‘v’iZ 1: Ei Nvi Ei+1

— any two consecutive executions E; and E; .1 are indistinguishable for
some node v; (we assume that v; does not crash in E; and E; 1)

e Indistinguishability:
Vi =1 : Node v; decides on the same value in E; and E; ¢

e Agreement:
Vi =1 : Allnodes decide on the same value in E; and E;_ 4

 Hence, all executions Ey, ..., E+ have the same decision value!

e @Goal:
E;: no crashes, all inputs are 0; E+: no crashes, all inputs are 1

Distributed Systems, SS 2015 Fabian Kuhn 24

Lower Bound on Rounds: Proof

UNI

FREIBURG

Example: f =4, n =6 Need to show: 4 rounds are not enough

©C O O O O O

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn

25

Lower Bound on Rounds: Proof _

Example: f =4,n =6 Need to show: 4 rounds are not enough

R
RAKKEA
P
\Q&?&Xs\»
S
‘r’"“\ 1‘
//,\\\

S

C O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 26

Lower Bound on Rounds: Proof

Example: f =4, n =6

C O O O QO O

Need to show: 4 rounds are not enough

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015

Fabian Kuhn 27

Lower Bound on Rounds: Proof _

Example: f =4,n =6 Need to show: 4 rounds are not enough

-

-

R IR RS o
e T e e T
S S0 SOOI
I @t 7% 5 >

o[

C O O O

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 28

Lower Bound on Rounds: Proof

)
o
=2
w
54
™

Example: f =4, n =6

©C O O O O O

round 1

Distributed Systems, SS 2015

round 2

Fabian Kuhn

% 0

29

Need to show: 4 rounds are not enough

Lower Bound on Rounds: Proof

UNI
I

FREIBURG

Example: f =4,n =6 Need to show: 4 rounds are not enough

L NI e S A 0 A
DRI > XK <D

0 | @R @k 5N ,;o‘

0

0

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 30

Lower Bound on Rounds: Proof

)
o
=2
w
54
™

Example: f =4, n =6

©C O O O O O

round 1

Distributed Systems, SS 2015

round 2

Fabian Kuhn

% 0

31

Need to show: 4 rounds are not enough

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 32

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 33

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

6 © © © @ 6

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 34

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

e © © ® & ©

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 35

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

©c © © ® & ©

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 36

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 37

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 38

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

XXX

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 39

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

C O O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 40

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

0 @\ @

0 @ @<

0 2° 5

0 J »

0 @ @

0 ©

N A N A N A N A
round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 41

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

\ @
N 7
KK
AE@
HEK
Ne

AN
¢\>

Q O o o

— —— e/ e/

N A N A N A N A

round 1 round 2 round 3 round 4

C O O O O O

Distributed Systems, SS 2015 Fabian Kuhn 42

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

0 (D

0 |@ P

0 | @

0 | @ 'Q

0 | "Q

S S) I () B) N)
N A N A N A N A
round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 43

Lower Bound on Rounds: Proof

Example: f =4, n =6

_e O O O O

)|

7\
22\

KSR

s

X7

N A N A N A N A

round 3

round 1

Distributed Systems, SS 2015

round 2

XXX

Fabian Kuhn

round 4

44

Need to show: 4 rounds are not enough

Lower Bound on Rounds: Proof :

Example: f =4, n =6 Need to show: 4 rounds are not enough

_e O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 45

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

_e O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 46

BURG

Lower Bound on Rounds: Proof

zl.u
5 ¥

Example: f =4, n =6 Need to show: 4 rounds are not enough

_e O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 47

Lower Bound on Rounds: Proof

UNI

FREIBURG

Example: f =4, n =6 Need to show: 4 rounds are not enough

_e O O O O

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn

48

Lower Bound on Rounds: Proof

Example: f =4, n =6 Need to show: 4 rounds are not enough

_e O O O O

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 49

Lower Bound on Rounds: Proof

Example: f =4, n =6 Need to show: 4 rounds are not enough

o N = = N = N =

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 50

Lower Bound on Rounds: Proof

UNI

FREIBURG

Example: f =4, n =6 Need to show: 4 rounds are not enough

o N = = N = N =

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn

51

Lower Bound on Rounds: Proof

UNI
I

FREIBURG

Example: f =4, n =6 Need to show: 4 rounds are not enough

N A N A N A N A

round 1 round 2 round 3 round 4

Distributed Systems, SS 2015 Fabian Kuhn 52

Lower Bound on Rounds

UNI

FREIBURG

meoremw

If at most f < n — 2 of n nodes of a synchronous
message passing system can crash, at least f + 1
rounds are needed to solve consensus.

Proof:

e Similarity chain starting with fault-free all-zeroes execution and
ending with fault-free all-ones execution

* |n all executions, at most one crash per round

e Construction works as long as there are at least 2 non-faulty
nodes in each execution (n = f + 2)

e Validity: all-zeroes = decision 0; all-ones = decision 1
Similarity Chain: same decision in all executions

Distributed Systems, SS 2015 Fabian Kuhn 53

Arbitrary Behavior

UNI
I

FREIBURG

e The assumption that processes crash and stop forever is

Probably Are you there?
not... @

sometimes too optimistic

 Maybe the processes fail
and recover:

e Maybe the processes are
damaged:

Distributed Systems, SS 2015

& —

®

| Are you there?

.ﬂ o
P
c M

Fabian Kuhn

l‘T
X

N
ime

54

Consensus #5: Byzantine Failures

e Different processes may receive different values
e A Byzantine process can behave like a crash-failed process

UNI
I

FREIBURG

faulty
node

Distributed Systems, SS 2015

Fabian Kuhn

55

After Failure, Node Remains in Network

UNI
I

FREIBURG

Round 1 Round 2 Round 3 Round4 Round?5

Distributed Systems, SS 2015

Fabian Kuhn

3

Failure

56

UNI

Consensus with Byzantine Failures

FREIBURG

e Again: If an algorithm solves consensus for f failed processes,
we say it is an f-resilient consensus algorithm

e Validity: If all non-faulty processes start with the same value,
then all non-faulty processes decide on that value

— Note that in general this validity condition does not guarantee that the
final value is an input value of a non-Byzantine process

— However, if the input is binary, then the validity condition ensures that
processes decide on a value that at least one non-Byzantine process had
initially

e Obviously, any f-resilient consensus algorithm requires at least
f + 1 rounds (follows from the crash failure lower bound)

e How large can f be...? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?

Distributed Systems, SS 2015 Fabian Kuhn 57

Impossibility

UNI
FREIBURG

Beorem)
There is no f-resilient Byzantine consensus
algorithm for n nodes for f = n/3

Proof outline
* First, we prove the 3 node case
— not possible for f =1

e The general case can then be proved by reduction
from the 3 node case

— Given an algorithm for n node and f faults for f = n/3,
we can construct a 1-resilient 3-node algorithm

Distributed Systems, SS 2015 Fabian Kuhn

58

The 3 Node Case

UNI
I

FREIBURG

Lemma
There is no 1-resilient algorithm for 3 nodes

Proof: Intuition:
Byzantine

e Node A may also receive
information from C about B’s
messages to C

e Node A may receive conflicting
information about B from C and
about C from B (the same for Cl!)

e |tisimpossible for Aand Cto
decide which information to
base their decision on!

Distributed Systems, SS 2015 Fabian Kuhn 59

Proof Sketch :

UNI
FREIBURG

e Assume that both A and C have input
0. If they decided 1, they could violate
the validity condition 2 A and C must
decide O independent of what B says

e Similary, A and C must decide 1 if
their inputs are 1

e We see that the processes must base
their decision on the majority vote

e |fA’sinputisO and B tells A o \

that its input is 0 = A decides O @
e |[fC’sinputis1andBtellsC

that its input is 1 = C decides 1 5@3

Distributed Systems, SS 2015 Fabian Kuhn 60

The General Case

UNI
I

FREIBURG

e Assume for contradiction that there is an f-resilient algorithm
A for n nodes, where f = n/3

 We use this algorithm to solve consensus for 3 nodes where
one node is Byzantine!

e For simplicity assume that n is divisible by 3
 We let each of the three processes simulate n/3 processes

Distributed Systems, SS 2015 Fabian Kuhn 61

The General Case

UNI
I

FREIBURG

* One of the 3 nodes is Byzantine = its n/3 simulated nodes
may all behave like Byzantine nodes

e Since algorithm A tolerates n/3 Byzantine failures, it can still
reach consensus
— We solved the consensus problem for three processes!

Consensus! Consensus!

Distributed Systems, SS 2015 Fabian Kuhn 62

URG

Cons. #6: Simple Byzantine Agreement Alg. _=.

= | TH

e Can the nodes reach consensus ifn > 3f7?
e Asimpler question: Whatifn =4and f =17
e The answer is yes. It takes two rounds:

Round 1: Exchange all values Round 2: Exchange received info

1,.,2,3 1,1,3,0
2,1,2,3

0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

2,1,.,3 = = 0,1,2,. 2,0,2,1
1,1,2,3
0,1,2,3

[matrix: one column for each original value, one row for each neighbor]

Distributed Systems, SS 2015 Fabian Kuhn 63

EIBURG

Simple Byzantine Agreement Algorithm

Z
o5&

e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted

Distributed Systems, SS 2015 Fabian Kuhn 64

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted

— The value of the Byzantine node is accepted iff it sends the same value to
at least two nodes in the first round.

Distributed Systems, SS 2015 Fabian Kuhn 65

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted
— The value of the Byzantine node is accepted iff it sends the same value to
at least two nodes in the first round.

e Decide on minimum accepted value!

,. 1,1,3,0
K 2,1,2,3 >x,1,2,3
0,1,2,3
Consensus!
2,0,2,1 _= 0,3,1,3
x,1,2,3< 1,1,2,3 1,1,2,3 >x,1,2,3

0,1,2,3 2,1,2,3

Distributed Systems, SS 2015 Fabian Kuhn 66

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

e Does the algorithm still work in general forany f and n > 3f?
e Theanswerisno.Try f =2andn =7:

Round 1: Exchange all values Round 2: Exchange received info

Majority
says 0!

Majority
says 1!

 The problem is that g can say different things about what p
sent to q
— What is the solution to this problem?

Distributed Systems, SS 2015 Fabian Kuhn 67

Simple Byzantine Agreement Algorithm

e The solution is simple: Again exchange all information!

* This way, the processes can learn that g gave inconsistent
information about p

* Hence, g can be excluded, and also p if it also gave
inconsistent information (about q).

e If f =2andn > 6, consensus can be reached in 3 rounds!

e |n fact, the following algorithm solves the problem
forany f and anyn > 3f:

Exchange all information for f 4+ 1 rounds
lgnore all processes that provided inconsistent information
Let all processes decide based on the same input

Distributed Systems, SS 2015 Fabian Kuhn

UNI
I

FREIBURG

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

The proposed algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal
+ It only takes f + 1 rounds. This is even optimal for crash failures!
+ It works for any input and not just binary input

However, it has some considerable disadvantages:

— “lgnoring all processes that provided inconsistent information”
is not easy to formalize

— The size of the messages increases exponentially!
This is a severe problem. It is therefore worth studying whether
it is possible to solve the problem with small(er) messages

Distributed Systems, SS 2015 Fabian Kuhn 69

