

Chapter 6 Consensus

Distributed Systems

SS 2015

Fabian Kuhn

Overview

- Introduction
- Consensus #1: Shared Memory
- Consensus #2: Wait-free Shared Memory
- Consensus #3: Read-Modify-Write Shared Memory
- Consensus #4: Synchronous Systems
- Consensus #5: Byzantine Failures
- Consensus #6: A Simple Algorithm for Byzantine Agreement
- Consensus #7: The Queen Algorithm
- Consensus #8: The King Algorithm
- Consensus #9: Byzantine Agreement Using Authentication
- Consensus #10: A Randomized Algorithm
- Shared Coin
- Slides by R. Wattenhofer (ETHZ)

Consensus #4: Synchronous Systems

- One can sometimes tell if a processor had crashed
 - Timeouts
 - Broken TCP connections
- Can one solve consensus at least in synchronous systems?
- Model
 - All communication occurs in synchronous rounds
 - Complete communication graph

Crash Failures

- Broadcast: Send a message to all nodes in one round
 - At the end of the round everybody receives the message a
 - Every process can broadcast a value in each round
- Crash Failures: A broadcast can fail if a process crashes

Some of the messages may be lost, i.e., they are never received

Process disappears after failure

Round 1 Round 2 Round 3 Round 4 Round 5

Consensus Repetition

- Input: everybody has an initial value
- Agreement: everybody must decide on the same value

• Validity conditon: If everybody starts with the same value, everybody must decide on that value

A Simple Consensus Algorithm

Each process:

- 1. Broadcast own value
- 2. Decide on the minimum of all received values

Including the own value

Note that only one round is needed!

Execution Without Failures

- Broadcast values and decide on minimum → Consensus!
- Validity condition is satisfied: If everybody starts with the same initial value, everybody sticks to that value (minimum)

Execution With Failures

- The failed processor doesn't broadcast its value to all processors
- Decide on minimum → No consensus!

- If an algorithm solves consensus for f failed processes, we say it is an f-resilient consensus algorithm
- Example: The input and output of a 3-resilient consensus alg.

• Refined validity condition:

All processes decide on a value that is available initially

Each process:

Round 1:

Broadcast own value

Round 2 to round f + 1:

Broadcast the minimum of the received values unless it has been sent before

End of round f + 1:

Decide on the minimum value received

• Example: f = 2 failures, f + 1 = 3 rounds needed

Round 1: Broadcast all values to everybody

Round 2: Broadcast all new values to everybody

Round 3: Broadcast all new values to everybody

Decide on minimum → Consensus!

Analysis

• If there are f failures and f+1 rounds, then there is a round with no failed process

Analysis

- At the end of the round with no failure
 - Every (non faulty) process knows about all the values of all the other participating processes
 - This knowledge doesn't change until the end of the algorithm
- Therefore, everybody will decide on the same value
- However, as we don't know the exact position of this round, we have to let the algorithm execute for f+1 rounds
- Validity: When all processes start with the same input value, then consensus is that value

Theorem

Theorem

If at most $f \le n-2$ of n nodes of a synchronous message passing system can crash, at least f+1 rounds are needed to solve consensus.

Proof idea:

- Show that f rounds are not enough if $n \ge f + 2$
- Before proving the theorem, we consider a

"worst-case scenario": In each round one of the processes fails

Lower Bound on Rounds: Intuition

Round

1

 p_k

- Before process p_i fails, it sends its value a only to one process p_k
- Before process p_k fails, it sends its value a to only one process p_m

Lower Bound on Rounds: Intuition

Lower Bound on Rounds: Intuition

Recall (from Chapters 1 & 2):

- For the impossibility proof of the two generals problem, we used an indistinguishability proof
- Execution E is indistinguishable from execution E' for some node v if v sees the same things in both executions.
 - same inputs and messages (schedule)
- If E is indistinguishable from E' for v, then v does the same thing in both executions.
 - We denoted this by E|v = E'|v

Similarity:

• Call E_i and E_j similar if $E_i|_{\mathcal{V}}=E_j|_{\mathcal{V}}$ for some node v

$$E_i \sim_v E_i \iff E_i | v = E_i | v$$

Similarity Chain:

• Consider a sequence of executions E_1 , E_2 , E_3 , ..., E_T such that

$$\forall i \geq 1 : E_i \sim_{v_i} E_{i+1}$$

– any two consecutive executions E_i and E_{i+1} are indistinguishable for some node v_i (we assume that v_i does not crash in E_i and E_{i+1})

Indistinguishability:

 $\forall i \geq 1$: Node v_i decides on the same value in E_i and E_{i+1}

Agreement:

 $\forall i \geq 1$: All nodes decide on the same value in E_i and E_{i+1}

• Hence, all executions E_1, \dots, E_T have the same decision value!

Goal:

 E_1 : no crashes, all inputs are 0; E_T : no crashes, all inputs are 1

Lower Bound on Rounds

Theorem

If at most $f \le n-2$ of n nodes of a synchronous message passing system can crash, at least f+1 rounds are needed to solve consensus.

Proof:

- Similarity chain starting with fault-free all-zeroes execution and ending with fault-free all-ones execution
- In all executions, at most one crash per round
- Construction works as long as there are at least 2 non-faulty nodes in each execution $(n \ge f + 2)$
- Validity: all-zeroes ⇒ decision 0; all-ones ⇒ decision 1
 Similarity Chain: same decision in all executions

Arbitrary Behavior

 The assumption that processes crash and stop forever is sometimes too optimistic

 Maybe the processes fail and recover:

Maybe the processes are damaged:

Consensus #5: Byzantine Failures

- Different processes may receive different values
- A Byzantine process can behave like a crash-failed process

After Failure, Node Remains in Network

Round 1 Round 2 Round 3 Round 4 Round 5

Consensus with Byzantine Failures

- Again: If an algorithm solves consensus for f failed processes,
 we say it is an f-resilient consensus algorithm
- Validity: If all non-faulty processes start with the same value,
 then all non-faulty processes decide on that value
 - Note that in general this validity condition does not guarantee that the final value is an input value of a non-Byzantine process
 - However, if the input is binary, then the validity condition ensures that processes decide on a value that at least one non-Byzantine process had initially
- Obviously, any f-resilient consensus algorithm requires at least f+1 rounds (follows from the crash failure lower bound)
- How large can f be...? Can we reach consensus as long as the majority of processes is correct (non-Byzantine)?

Impossibility

Theorem

There is no f-resilient Byzantine consensus algorithm for n nodes for $f \ge n/3$

Proof outline

- First, we prove the 3 node case
 - not possible for f = 1
- The general case can then be proved by reduction from the 3 node case
 - Given an algorithm for n node and f faults for $f \ge n/3$, we can construct a 1-resilient 3-node algorithm

The 3 Node Case

Lemma

There is no 1-resilient algorithm for 3 nodes

Proof: Byzantine ? A C

Intuition:

- Node A may also receive information from C about B's messages to C
- Node A may receive conflicting information about B from C and about C from B (the same for C!)
- It is impossible for A and C to decide which information to base their decision on!

Proof Sketch

- Assume that both A and C have input
 0. If they decided 1, they could violate the validity condition → A and C must decide 0 independent of what B says
- Similary, A and C must decide 1 if their inputs are 1
- We see that the processes must base their decision on the majority vote
- If A's input is 0 and B tells A that its input is 0 → A decides 0
- If C's input is 1 and B tells C
 that its input is 1 → C decides 1

The General Case

- Assume for contradiction that there is an f-resilient algorithm A for n nodes, where $f \ge n/3$
- We use this algorithm to solve consensus for 3 nodes where one node is Byzantine!
- For simplicity assume that *n* is divisible by 3
- We let each of the three processes simulate n/3 processes

The General Case

- One of the 3 nodes is Byzantine \implies its n/3 simulated nodes may all behave like Byzantine nodes
- Since algorithm A tolerates n/3 Byzantine failures, it can still reach consensus
 - \implies We solved the consensus problem for three processes!

Cons. #6: Simple Byzantine Agreement Alg.

FREIBURG

- Can the nodes reach consensus if n > 3f?
- A simpler question: What if n = 4 and f = 1?
- The answer is yes. It takes two rounds:

Round 1: Exchange all values

2,1,.,3

Round 2: Exchange received info

[matrix: one column for each original value, one row for each neighbor]

- After round 2, each node has received 12 values, 3 for each of the 4 input values (columns). If at least 2 of the 3 values of a column are equal, this value is accepted, otherwise it is discarded.
 - Values of honest nodes are accepted

- After round 2, each node has received 12 values, 3 for each of the 4 input values (columns). If at least 2 of the 3 values of a column are equal, this value is accepted, otherwise it is discarded.
 - Values of honest nodes are accepted
 - The value of the Byzantine node is accepted iff it sends the same value to at least two nodes in the first round.

- After round 2, each node has received 12 values, 3 for each of the 4 input values (columns). If at least 2 of the 3 values of a column are equal, this value is accepted, otherwise it is discarded.
 - Values of honest nodes are accepted
 - The value of the Byzantine node is accepted iff it sends the same value to at least two nodes in the first round.
- Decide on minimum accepted value!

- Does the algorithm still work in general for any f and n > 3f?
- The answer is no. Try f = 2 and n = 7:

Round 1: Exchange all values

Round 2: Exchange received info

- The problem is that q can say different things about what p sent to q
 - What is the solution to this problem?

- The solution is simple: Again exchange all information!
- This way, the processes can learn that q gave inconsistent information about p
- Hence, q can be excluded, and also p if it also gave inconsistent information (about q).
- If f = 2 and n > 6, consensus can be reached in 3 rounds!
- In fact, the following algorithm solves the problem for any f and any n > 3f:

Exchange all information for f+1 rounds Ignore all processes that provided inconsistent information Let all processes decide based on the same input

The proposed algorithm has several advantages:

- + It works for any f and n > 3f, which is optimal
- + It only takes f + 1 rounds. This is even optimal for crash failures!
- + It works for any input and not just binary input

However, it has some considerable disadvantages:

- "Ignoring all processes that provided inconsistent information" is not easy to formalize
- The size of the messages increases exponentially!
 This is a severe problem. It is therefore worth studying whether it is possible to solve the problem with small(er) messages