)

Chapter 6
Consensus

Distributed Systems
SS 2015
Fabian Kuhn

UNI
!

FREIBURG

Overview

UNI

FREIBURG

Introduction

Consensus #1: Shared Memory

Consensus #2: Wait-free Shared Memory

Consensus #3: Read-Modify-Write Shared Memory
Consensus #4: Synchronous Systems

Consensus #5: Byzantine Failures

Consensus #6: A Simple Algorithm for Byzantine Agreement
Consensus #7: The Queen Algorithm

Consensus #8: The King Algorithm

Consensus #9: Byzantine Agreement Using Authentication
Consensus #10: A Randomized Algorithm

Shared Coin

Slides by R. Wattenhofer (ETHZ)

Distributed Systems, SS 2015 Fabian Kuhn

Arbitrary Behavior

UNI
I

FREIBURG

e The assumption that processes crash and stop forever is

Probably Are you there?
not... @

sometimes too optimistic

 Maybe the processes fail
and recover:

e Maybe the processes are
damaged:

Distributed Systems, SS 2015

& —

®

| Are you there?

.ﬂ o
P
c M

Fabian Kuhn

l‘T
X

N
ime

Consensus #5: Byzantine Failures

UNI
I

FREIBURG

e Different processes may receive different values
e A Byzantine process can behave like a crash-failed process

faulty
node

Distributed Systems, SS 2015 Fabian Kuhn

After Failure, Node Remains in Network _

UNI
FREIBURG

Round 1 Round 2 Round 3 Round4 Round?5

3 J Failure

Distributed Systems, SS 2015 Fabian Kuhn 5

UNI

Consensus with Byzantine Failures

FREIBURG

e Again: If an algorithm solves consensus for f failed processes,
we say it is an f-resilient consensus algorithm

e Validity: If all non-faulty processes start with the same value,
then all non-faulty processes decide on that value

— Note that in general this validity condition does not guarantee that the
final value is an input value of a non-Byzantine process

— However, if the input is binary, then the validity condition ensures that
processes decide on a value that at least one non-Byzantine process had
initially

e Obviously, any f-resilient consensus algorithm requires at least
f + 1 rounds (follows from the crash failure lower bound)

e How large can f be...? Can we reach consensus as long as
the majority of processes is correct (non-Byzantine)?

Distributed Systems, SS 2015 Fabian Kuhn 6

Impossibility

UNI

FREIBURG

Beorem)
There is no f-resilient Byzantine consensus
algorithm for n nodes for f = n/3

Proof outline
* First, we prove the 3 node case
— not possible for f =1

e The general case can then be proved by reduction
from the 3 node case

— Given an algorithm for n node and f faults for f = n/3,
we can construct a 1-resilient 3-node algorithm

Distributed Systems, SS 2015 Fabian Kuhn

The 3 Node Case

UNI
I

FREIBURG

Lemma
There is no 1-resilient algorithm for 3 nodes

Proof: Intuition:
Byzantine

e Node A may also receive
information from C about B’s
messages to C

e Node A may receive conflicting
information about B from C and
about C from B (the same for Cl!)

e |tisimpossible for Aand Cto
decide which information to
base their decision on!

Distributed Systems, SS 2015 Fabian Kuhn 8

The General Case

UNI
I

FREIBURG

* One of the 3 nodes is Byzantine = its n/3 simulated nodes
may all behave like Byzantine nodes

e Since algorithm A tolerates n/3 Byzantine failures, it can still
reach consensus
— We solved the consensus problem for three processes!

Consensus! Consensus!

Distributed Systems, SS 2015 Fabian Kuhn 9

URG

Cons. #6: Simple Byzantine Agreement Alg. _=.

= | TH

e Can the nodes reach consensus ifn > 3f7?
e Asimpler question: Whatifn =4and f =17
e The answer is yes. It takes two rounds:

Round 1: Exchange all values Round 2: Exchange received info

1,.,2,3 1,1,3,0
2,1,2,3

0,1,2,3

0,3,1,3
1,1,2,3
2,1,2,3

2,1,.,3 = = 0,1,2,. 2,0,2,1
1,1,2,3
0,1,2,3

[matrix: one column for each original value, one row for each neighbor]

Distributed Systems, SS 2015 Fabian Kuhn 10

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

e After round 2, each node has received 12 values, 3 for each of the
4 input values (columns). If at least 2 of the 3 values of a column
are equal, this value is accepted, otherwise it is discarded.

— Values of honest nodes are accepted

— The value of the Byzantine node is accepted iff it sends the same value to
at least two nodes in the first round.

 Decide on most frequently accepted value!

1,1,3,0
2,1,2,3 »>x,1,2,3
0,1,2,3

Consensus!

. 0,3,1,3
— 1,1,2,3 »~x,1,2,3
2,1,2,3

Distributed Systems, SS 2015 Fabian Kuhn 11

\

2,0,2,1
x,1,2,3< 1,1,2,3
0,1,2,3

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

e Does the algorithm still work in general forany f and n > 3f?
e Theanswerisno.Try f =2andn =7:

Round 1: Exchange all values Round 2: Exchange received info

Majority
says 0!

Majority
says 1!

 The problem is that g can say different things about what p
sent to q
— What is the solution to this problem?

Distributed Systems, SS 2015 Fabian Kuhn 12

Simple Byzantine Agreement Algorithm

e The solution is simple: Again exchange all information!

e This way, the nodes can learn that g gave inconsistent
information about p

* Hence, g can be excluded, and also p if it also gave
inconsistent information (about q).

e If f =2andn > 6, consensus can be reached in 3 rounds!

e |n fact, the following “algorithm” solves the problem
forany f and anyn > 3f:

Exchange all information for f 4+ 1 rounds
lgnore all nodes that provided inconsistent information
Let all nodes decide based on the same input

Distributed Systems, SS 2015 Fabian Kuhn

UNI
I

FREIBURG

Simple Byzantine Agreement Algorithm ;

UNI
FREIBURG

The proposed algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal
+ It only takes f + 1 rounds. This is even optimal for crash failures!
+ It works for any input and not just binary input

However, it has some considerable disadvantages:

— “lgnoring all nodes that provided inconsistent information”
is not easy to formalize

— The size of the messages increases exponentially!
This is a severe problem. It is therefore worth studying whether
it is possible to solve the problem with small(er) messages

Distributed Systems, SS 2015 Fabian Kuhn 14

UNI

Consensus #7: The Queen Algorithm

FREIBURG

e The Queen algorithm is a simple Byzantine agreement
algorithm that uses small messages

e The Queen algorithm solves consensus with n nodes and f
failures where f <n/4in f + 1 phases

A phase consists
of 2 rounds

Idea:

e There is a different (a priori known) queen in each phase

e Since there are f + 1 phases, in one phase the queen is not
Byzantine

 Make sure that in this round all nodes choose the same value
and that in future rounds the nodes do not change their
values anymore

Distributed Systems, SS 2015 Fabian Kuhn 15

The Queen Algorithm

UNI
FREIBURG

.) At the end of phase f + 1,
In each phasei € {1, .., f + 1}.% B s va e J
Round 1:; Also send own }
Broadcast own value 4[value to oneself
Set own value to the value that was received most often
If own value appears > n/2 + f times

support this value If several values have the\
else same (highest)
do not support any value frequency, choose any

value, e.g., the smallest
¢ £ Y

Round 2:
The queen broadcasts its value
If not supporting any value
set own value to the queen’s value

Distributed Systems, SS 2015 Fabian Kuhn 16

UNI

The Queen Algorithm: Example

FREIBURG

e Exampleen=6,f =1

e Phase 1, round 1 (all broadcast):
No node

supports a value

All received values
A

4 N\
0,0,1,1,1,2

0,0,0,1,1,2

0,0,0,1,1,2

Majority value

0,0,1,1,1,2 0

Distributed Systems, SS 2015 Fabian Kuhn 17

The Queen Algorithm: Example

UNI

FREIBURG

e Exampleen=6,f =1

 Phase 1, round 2 (queen broadcasts):
[All nodes choose

the queen’s value

Distributed Systems, SS 2015 Fabian Kuhn

18

J

UNI

The Queen Algorithm: Example

FREIBURG

e Exampleen=6,f =1

e Phase 2, round 1 (all broadcast):
No node

supports a value

0,0,1,1,1,2 0,0,0,1,1,2

0,0,0,1,1,2

0,01,1,1,2 C: 1

Distributed Systems, SS 2015 Fabian Kuhn 19

The Queen Algorithm: Example

UNI

FREIBURG

e Exampleen=6,f =1

 Phase 2, round 2 (queen broadcasts): e te: choose
the queen’s value

J

ﬁ)nsensus!]

Distributed Systems, SS 2015 Fabian Kuhn 20

UNI
I

FREIBURG

The Queen Algorithm: Analysis

e After the phase where the queen is correct, all correct nodes

have the same value
— If all nodes change their values to the queen’s value, obviously all values
are the same

— If some node does not change its value to the queen’s value, it received a
value > n/2 + f times = All other correct nodes (including the queen)
received this value > n/2 times and thus all correct nodes share this

value

e Inall future phases, no node changes its value
— In the first round of such a phase, nodes receive their own value from at
least n — f > n/2 nodes and thus do not change it

— The nodes do not accept the queen’s proposal if it differs from their own
value in the second round because the nodes received their own value at
leastn — f > n/2 + f times. Thus, all correct nodes support the same

value

That’s why we need

f<n/4!

Distributed Systems, SS 2015 Fabian Kuhn 21

The Queen Algorithm: Summary

UNI
FREIBURG

The Queen algorithm has several advantages:

+ The messages are small: nodes only exchange their current
values

+ It works for any input and not just binary input

However, it also has some disadvantages:

— The algorithm requires f + 1 phases consisting of 2 rounds
each ... this is twice as much as an optimal algorithm

— It only works with f < n/4 Byzantine nodes!

e |sit possible to get an algorithm that works with f < n/3
Byzantine nodes and uses small messages?

Distributed Systems, SS 2015 Fabian Kuhn 22

Consensus #8: The King Algorithm

UNI

FREIBURG

e The King algorithm is an algorithm that tolerates f < n/3
Byzantine failures and uses small messages

e The King algorithm also takes f + 1 phases

A phase now
consists of 3 rounds
Idea:

e The basic idea is the same as in the Queen algorithm

e There is a different (a priori known) king in each phase

e Since there are f + 1 phases, in one phase the king is not
Byzantine

 The difference to the Queen algorithm is that the correct nodes
only propose a value if many nodes have this value, and a value
is only accepted if many nodes propose this value

Distributed Systems, SS 2015 Fabian Kuhn 23

The King Algorithm

UNI
I

FREIBURG

In each phasei € {1...f + 1}: <[At the end of phase f + 1, J

decide on own value

Round 1:

Broadcast own value Also send own
value to oneself

Round 2:

If some value x appears = n — f times
Broadcast “Propose x”

If some proposal received > f times
Set own value to this proposal

Round 3:

The king broadcasts its value

If own value received < n — f proposals
Set own value to the king’s value

Distributed Systems, SS 2015 Fabian Kuhn 24

The King Algorithm: Example

UNI
I

FREIBURG

e Exampleen=4,f=1

e Phase1:
* = “Propose 0” Il nodes choose
1* = “Propose 1” the king’ value
“Propose 1”

0,0,1,1 0,1,1,1 2 propose 1 2 propose 1

P
<

0,0,1,1
1 proposal each

Round 1 Round 2

Distributed Systems, SS 2015 Fabian Kuhn 25

UNI
FREIBURG

The King Algorithm: Example

e Exampleen=4,f=1

 Phase 2:
0* = “Propose 0” Consensus!]
1* = “Propose 1”

| take the
king’s value!

“Propose 1”
Set to 1!

0,0,1,1 0,1,1,1 2 propose 1 2 propose 1
1*

0,1,1,1<sm ”
Propose 1 3 propose 1 | keep my

Round 1 Round 2 ownvalue! poind 3

26

Distributed Systems, SS 2015 Fabian Kuhn

UNI
I

FREIBURG

The King Algorithm: Analysis

e Observation: If some correct node proposes x, then no other

correct node proposes y #+ x

— Both nodes would have to receive = n — f times the same value, i.e.,
both nodes received their value from = n — 2f distinct correct nodes

— In total, there must be = 2(n — 2f) + f > n nodes, a contradiction!

We used that
f <n/3l

e The validity condition is satisfied

— |If all correct nodes start with the same value, all correct nodes receive
this value = n — f times and propose it

— All correct nodes receive = n — f times proposals, i.e., no correct node
will ever change its value to the king’s value

Distributed Systems, SS 2015 Fabian Kuhn 27

The King Algorithm: Analysis

UNI
I

FREIBURG

e After the phase where the king is correct, all correct processes
have the same value

— If all processes change their values to the king’s value, obviously all values
are the same

— If some process does not change its value to the king’s value, it received a
proposal = n — f times =2 = n — 2f correct processes broadcast this
proposal and all correct processes receive it = n — 2f > f times
— All correct processes set their value to the proposed value. Note that
only one value can be proposed > f times, which follows from the
observation on the previous slide

e |n all future phases, no process changes its value

— This follows immediately from the fact that all correct processes have the
same value after the phase where the king is correct and the validity
condition

Distributed Systems, SS 2015 Fabian Kuhn 28

UNI
I

FREIBURG

The King Algorithm: Summary

The King algorithm has several advantages:
+ It works for any f and n > 3f, which is optimal

+ The messages are small: processes only exchange their current
values

+ It works for any input and not just binary input

However, it also has a disadvantage:

— The algorithm requires f + 1 phases consisting of 3 rounds each
This is three times as much as an optimal algorithm

e Isit possible to get an algorithm that uses small messages and
requires fewer rounds of communication?

Distributed Systems, SS 2015 Fabian Kuhn 29

Consensus #9: B. A. Using Authentication _

UNI
FREIBURG

 Asimple way to reach consensus is to use authenticated

messages w must be
lying!

e Unforgeability condition: If a node never sends _
a message m, then no correct node ever accepts m vsaid 1

e Why is this condition helpful?

— A Byzantine node cannot convince a correct node that some other correct
node voted for a certain value if they did not!

Idea:

 There is a designated node v. The goal is to decide on v’s value

e For the sake of simplicity, we assume a binary input. The default
value is 0: if v cannot convince the nodes that v’s input is 1,
everybody chooses 0

Distributed Systems, SS 2015 Fabian Kuhn 30

Byzantine Agreement Using Authentication

EIBURG

Z
o5&

If | am v and own inputis 1

value :=1

broadcast “v has 1”
else

value := 0

Ineachroundr € {1,...,r + 1}:
If value = 0 and accepted r messages “v has 1” in total
including a message from v itself
value:=1
broadcast “v has 1” plus the r accepted messages that
caused the local value to be setto 1

After r + 1 rounds:
Decide value In total + 1 authenticated
“v has 1”7 messages

Distributed Systems, SS 2015 Fabian Kuhn 31

UNI

Byz. Agr. Using Authentication: Analysis

e Assume that v is correct

— V’sinput is 1: All correct nodes accept v’'s message in round 1 and set
value to 1. No node ever changes its value back to 0

— vV’sinputis 0: v never sends a message “v has 1”, thus no correct
process ever sets its value to 1

e Assume that v is Byzantine
— v tries to convince some correct nodes that its inputis 1

— Assume that a correct node u sets its valueto 1 inaroundr < f + 1:
Node u has accepted r messages including the message from v.
Therefore, all other correct nodes accept the same r messages plus u’s
message and set their valuesto 1 as well inroundr + 1

— Assume that a correct node u sets its value to 1 in round f + 1:
In this case, u accepted f + 1 messages. At least one of those is sent by
a correct node, which must have set its value to 1 in an earlier round.
We are again in the previous case, i.e., all correct nodes decide 1!

Distributed Systems, SS 2015 Fabian Kuhn 32

FREIBURG

Byz. Agr. Using Authentication: Summary _

UNI
FREIBURG

Using authenticated messages has several advantages:

+ It works for any number of Byzantine nodes!

+ It only takes f + 1 rounds, which is optimal

+ Small messages: nodes send at most f + 1 “short” messages to

all other nodes in a single round _
sub-exponential length 1

However, it also has some disadvantages:

— If v is Byzantine, the nodes may agree on a value that is not in
the original input

— |t only works for binary input
— The algorithm requires authenticated messages...

Distributed Systems, SS 2015 Fabian Kuhn 33

B. A. Using Authentication: Improvements _

UNI
FREIBURG

 Can we modify the alg. so that it satisfies the validity condition?

— Yes! Run the algorithm in parallel for 2f + 1 “masters” v. Either 0 or 1

occurs at least f + 1 times, i.e., at least one correct node had this value.
Decide on this value!

— Alas, this modified protocol only works if f < n/2
e Can we modify the algorithm so that it also works with an
arbitrary input?
— Yes! In fact, the algorithm does not have to be changed much
— We won’t discuss this modification in class

e Can we get rid of the authentication?

— Yes! Use consistent broadcast. This technique is not discussed either
— This modified protocol works if f < n/3, which is optimal

— However, each round is split into two
—> The total number of rounds is 2f + 2

Distributed Systems, SS 2015 Fabian Kuhn 34

Consensus #10: A Randomized Algorithm _

UNI
FREIBURG

e So far we mainly tried to reach consensus in synchronous
systems. The reason is that no deterministic algorithm can
guarantee consensus in asynchronous systems even if

only one process may crash Synchronous system: Communication
proceeds in synchronous rounds

e (Can one solve consensus in asynchronous systems if we allow
our algorithms to use randomization?

Asynchronous system: Messages
are delayed indefinitely

e The answer is yes!

e The basic idea of the algorithm is to push the initial value. If
other nodes do not follow, try to push one of the suggested
values randomly

e For the sake of simplicity, we assume that the input is binary and
at most f < n/9 nodes are Byzantine

Distributed Systems, SS 2015 Fabian Kuhn 35

Randomized Algorithm

UNI
I

FREIBURG

X :=owninput;r :=0
Broadcast proposal(x, 1)

Ineachroundr =1, 2, ...

Wait for n — f proposals
If at least n — 2f proposals have some value y
x = y; decideony
else if at least n — 4f proposals have some value y
X = y;
else
choose x randomly with Pr[x = 0] =Pr[x = 1] =1/2
Broadcast proposal(x,)
If decided on a value = stop

Distributed Systems, SS 2015 Fabian Kuhn 36

Randomized Algorithm: Analysis

UNI
FREIBURG

Validity condition (If all have the same input, all choose this value)

If all correct nodes have the same initial value x, they will receive

n — 2f proposals containing x in the first round and they will
decide on x

Agreement (if the nodes decide, they agree on the same value)

Assume that some correct node decides on x. This node must
have received x from n — 3f correct nodes. Every other correct
node must have received x at least n — 4f times, i.e., all correct

nodes set their local value to x, and propose and decide on x in
the next round

The processes broadcast at the end of a phase
to ensure that the processes that have already
decided broadcast their value again!

Distributed Systems, SS 2015 Fabian Kuhn 37

Randomized Algorithm: Analysis

UNI
FREIBURG

Termination (all correct processes eventually decide)

If some nodes do not set their local value randomly, they set their local
value to the same value.

Proof: Assume that some nodes set their value to 0 and some others to
1, i.e.,there are = n — 5f correct nodes proposing 0 and > n — 5f
correct processes proposing 1.

Then, in total there are = 2(n — 5f) + f > n nodes. Contradiction!

[That’s why we need f < n/9!]

— Thus, in the worst case all n — f correct nodes need to choose the same
bit randomly, which happens with probability 1/2"~/

— Hence, all correct processes eventually decide. The expected running time
is smaller than 2™

The running time is awfully slow. Is there a clever way to speed up the
algorithm?
What about simply setting x := 1?! (Why doesn’t it work?)

Distributed Systems, SS 2015 Fabian Kuhn 38

Can we do this faster?! Yes, with a Shared Coin

UNI

FREIBURG

e A betteridea is to replace

choose x randomly with Pr[x = 0] = Pr[x

with a subroutine in which all the processes compute
a so-called shared (a.k.a. common, “global”) coin

A shared coin is a random binary variable that is 0

I
—
el
I
p—
S~
[\

with constant probability and 1 with constant probability

e For the sake of simplicity, we assume that
there are at most f < n/3 crash failures
(no Byzantine failures!!!)

Distributed Systems, SS 2015 Fabian Kuhn

PN

All correct nodes know

\

the outcome of the
shared coin toss after
each execution of the
subroutine

~

4

39

Shared Coin Algorithm

UNI
I

FREIBURG

Code for process i:

Set local coin ¢; := 0 with probability 1/n, else ¢; :== 1

Broadcast c;

Wait for exactly n — f coins and collect all coins in the

local coin set s;
Broadcast s;

Wait for exactly n — f coin sets
If at least one coin is 0 among all coins in the coin sets

return 0
else
return 1

Distributed Systems, SS 2015

Assume the worst case:
Choose f sothat3f +1 =n

Fabian Kuhn

40

Shared Coin: Analysis

UNI
I

FREIBURG

e Termination (of the subroutine)

— All correct nodes broadcast their coins. It follows that all correct nodes
receive at least n — f coins

— All correct processes broadcast their coin sets. It follows that all correct
processes receive at least n — f coin sets and the subroutine terminates

 We will now show that at least 1/3 of all coins are seen by
everybody

A coin is seenifitis in at
least one received coin set

 More precisely: We will show that at least f + 1 coins are in at
least f + 1 coin sets
— Recall that 3f + 1 = n and therefore f +1 > n/3

— Since these coins are in at least f + 1 coin sets and all processes
receive n — f coin sets, all correct processes see these coins!

Distributed Systems, SS 2015 Fabian Kuhn 41

Shared Coin: Analysis

UNI
FREIBURG

e Proof that at least f + 1 coins are in at least f + 1 coin sets

— Draw the coin sets and the contained coins as a matrix

— Exampleen=7,f =2
[X means coin ¢; is in set s; 1

Sq S3 St Se S,
Cq X X X X X
C, X X
Cq X X X X X
C, X X X
Ce X X
Ce X X X X
C; X X X X

Distributed Systems, SS 2015 Fabian Kuhn 42

Shared Coin: Analysis

UNI
I

FREIBURG

e Atleast f + 1 rows (coins) have at least f + 1 x’s
(are in at least f + 1 coin sets)
— First, there are exactly (n — f)? x’s in this matrix

— Assume that the statement is wrong: Then at most f rows may be full and
containn — f x’s. And all other rows (at most n — f) have at most f x’s

— Thus, intotalwe haveatmost f(n—f)+ (n—f)f =2f(n—f) X's
— But2f(n—f)<(n—f)*because 2f <n-—f

[Here we us@ﬂ >1 >3 S5 Se Sy

Cy X X X X X
c, X X
‘ C3 X X X X X
‘ C, X X X
Cg X X
‘ Ce X X X X
‘ C X X X X

Distributed Systems, SS 2015 Fabian Kuhn 43

Shared Coin: Theorem

UNI

FREIBURG

Beorem)
All processes decide 0 with constant probability, and
all processes decide 1 with constant probability.

Proof:

e With probability (1 —1/n)* = 1/e = 0.37 all nodes choose 1.

Thus, all correct nodes return 1

e Thereareatleast f + 1 = n/3 coins seen by all correct nodes.

The probability that at least one of these coins is set to 0 is at
1

least
1 1\3
1—-{1——) =~=1—-|1—-] = 0.28
n e

Distributed Systems, SS 2015 Fabian Kuhn

w|S

44

Back to Randomized Consensus

UNI
FREIBURG

e If this shared coin subroutine is used, there is a constant
probability that the processes agree on a value

e Some nodes may not want to perform the subroutine because
they received the same value x at least n — 4f times.
However, there is also a constant probability that the result of
the shared coin toss is x |

e Of course, all nodes must take part in the execution of the
subroutine

e This randomized algorithm terminates in a constant number
of rounds (in expectation)!

Distributed Systems, SS 2015 Fabian Kuhn 45

Randomized Algorithm: Summary

UNI
I

FREIBURG

The randomized algorithm has several advantages:
+ It only takes a constant number of rounds in expectation

+ It can handle crash failures even if communication is
asynchronous

However, it also has some disadvantages:

— It works only if there are f < n/9 crash failures. It doesn’t
work if there are Byzantine nodes

— It only works for binary input

There are similar
algorithms for the
shared memory model

Can it be improved?

+ There is a constant expected time algorithm that tolerates
f < n/2 crash failures

e What about Byzantine failures?

Distributed Systems, SS 2015 Fabian Kuhn 46

Byzantine and Asynchronous?

UNI
FREIBURG

Are there algorithms that can solve Byzantine agreement in an

asynchronous environment (faster than simple individual coin
flips)?

Yes, there are.

However, the solution comes with a cost. The fraction of
nodes that can be Byzantine decreases to 1/35715. Also, the

expected message complexity of the state of the art algorithm
is 0(n3).

Message sizes remain polynomial.

The algorithm does not use a global coin, but tries to detect
(biased) local coinflips from Byzantine processes.

Distributed Systems, SS 2015 Fabian Kuhn 47

UNI

Message Complexity

FREIBURG

* |n all of the previously discussed message passing algorithms,
each (good) node broadcasts. Message complexity is Q(n?).

e |t was believed for long that the communication overhead of
Byzantine Agreement is inherently large.

e Can the message complexity be improved?
+ Yes!

+ Byzantine Agreement can be solved in a synchronous
environment with O(n+/n) messages.

— Requires polylogarithmic time.

Distributed Systems, SS 2015 Fabian Kuhn 48

Summary

UNI

FREIBURG

e We have solved consensus in a variety of models

e |n particular we have seen
— algorithms
— wrong algorithms
— lower bounds
— impossibility results
— reductions
— etc.

Distributed Systems, SS 2015

Fabian Kuhn

49

Consensus: Decision Tree

UNI
FREIBURG

Shared memory?

Message passing

Y N
Wait-free? Synchronous?
Y, N Y N
RMW? #1 _f Authenticated? Randomized?
Y N Y N Y N
IO | 99) #9| o | Byzantine? #10| . [N 99)
Y, N
f< n/3? H4 ‘:-.f
, Y/ \\N |
Also #7 if f < n/4 - \{ - @
Distributed Systems, SS 2015 Fabian Kuhn 50

Credits

UNI
FREIBURG

e The impossibility result (#2) is from Fischer, Lynch, Patterson, 1985
e The hierarchy (#3) is from Herlihy, 1991.

e The synchronous studies (#4) are from Dolev and Strong, 1983, and
others.

e The Byzantine agreement problem (#5) and the simple algorithm (#6)
are from Lamport, Shostak, Pease, 1980ff., and others

e The Queen algorithm (#7) and the King algorithm (#8) are from
Berman, Garay, and Perry, 1989.

e The algorithm using authentication (#9) is due to Dolev and Strong,
1982.

e The first randomized algorithm (#10) is from Ben-Or, 1983.
 The concept of a shared coin was introduced by Bracha, 1984.

e Byzantine Agreement with fewer than n? messages is from King and
Saia 2011.

 Byzantine Agreement in an asynchronous setting is from King and Saia
2013.

Distributed Systems, SS 2015 Fabian Kuhn 51

