
9. Reliability Page 1

9. Reliability

Aspects and Definitions

A measure of success with which a system conforms to some authoritative
specification of its behavior.

Probability that the system does not experience failures within a given period.

Typically used to describe systems that cannot be repaired or where the
continuous operation of the system is critical.

In transactional context: How to maintain Atomicity and Durability

Crash and crash recovery

By crash all kinds of failures are denoted that bring down a server and cause all
data in volatile memory to be lost (soft crash), but leave all data on stable
secondary storage intact, i.e. not a (hard crash).

A crash recovery algorithm restarts the server and brings its permanent data back
to its most recent, consistent state

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability Page 2

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability Page 3

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability Page 4

During crash recovery after a system failure, a server and its data are unavailable to

clients. Goal: minimize recovery time

Recovery performance and system availability

MTBF: mean time between failure

MTTR: mean time to repair

Availability: probability for a server to be ready to serve:

MTBF

MTBF + MTTR

Examples

Server fails once a month and takes 2 hours to recover: availability of 99.7%,
downtime of 26 h a year.

Server fails once every 48 h and takes 30 sec to recover: availability of 99.98%,
downtime of 105 min a year.

=⇒ Fast recovery is the key to high availability!

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability Page 5

Local Reliablity Protocols

ARIES:

Write-ahead Logging

Repeating History on Crash

Distributed Reliability Protocols

Commit Protocols

How to execute commit command for distributed transactions?
How to ensure Atomicity and Durability?

Termination Protocols

If a failure occurs, how can the remaining operational sites deal with it?
Non-blocking : the occurrence of failures should not force the sites to wait
until the failure is repaired to terminate the transaction.

Recovery Protocols

When a failure occurs, how do the sites where it occurred deal with it?
Independent: a failed site can determine the outcome of a transaction
without having to obtain remote information.

=⇒ Independent recovery → Non-blocking termination
Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 6

Local Recovery (Refresh)

Failure Recovery

We want to deal with three types of failures:

transaction failure (also: process failure): A transaction voluntarily or
involuntarily aborts. All of its updates need to beundone

system failure: Database or operating system crash, power outage, etc. All
information in main memory is lost. Must make sure that no committed
transaction is lost (or redo their effects) and that all other transactions are
undone.

media failure (also: device failure): Hard disk crash, catastrophic error (fire,
water, ...). Must recover database from stable storage

In spite of all these failures, we we want to guarantee atomicity and durability.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 7

Example: System Failure

Transactions T1, T2, and T5 were committed before the crash.

Durability: Ensure that updates are preserved (or redone).

Transactions T3 and T4 were not (yet) committed.

Atomicity: All of their effects need to be undone.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 8

Types of Storage

We assume three different types of storage:

volatile storage: This is essentially the buffer manager in main memory. We are
going to use volatile storage to cache the ”write-ahead log ı̈n a moment.

non-volatile storage: Typical candidate is a hard disk or SSD

stable storage: Non-volatile storage that survives all types of failures which is
hard to achieve in practice. Stability can be improved using, e.g., (network)
replication of disk data. Backup tapes are another example.

Observe how these storage types correspond to the three types of failures.

Interaction between volatile and non-volatile storage

Coordination policies between transactions and storage on non-volatile memory

Can modified pages written to disk even if there is no commit (Steal)?

Can we delay writing modified pages after commit (No-Force)?

Steal+No-Force

improve throughput and latency,

but make recovery more complicated

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 9

Types of Storage

We assume three different types of storage:

volatile storage: This is essentially the buffer manager in main memory. We are
going to use volatile storage to cache the ”write-ahead log ı̈n a moment.

non-volatile storage: Typical candidate is a hard disk or SSD

stable storage: Non-volatile storage that survives all types of failures which is
hard to achieve in practice. Stability can be improved using, e.g., (network)
replication of disk data. Backup tapes are another example.

Observe how these storage types correspond to the three types of failures.

Interaction between volatile and non-volatile storage

Coordination policies between transactions and storage on non-volatile memory

Can modified pages written to disk even if there is no commit (Steal)?

Can we delay writing modified pages after commit (No-Force)?

Steal+No-Force

improve throughput and latency,

but make recovery more complicated

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 10

Effects of TA/storage coordination on recovery

The decisions force/no force and steal/no steal have implications on what we
have to do during recovery:

If we want to use steal and no force (to increase concurrency and performance),
we have to implement redo and undo routines.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 11

ARIES Algorithm

Algorithm for Recovery and Isolation Exploiting Semantics

A better alternative to shadow paging which switches between
active/committed page

Works with steal and no-force

Data pages are updated in place

Uses ”logging”

Log: An ordered list of REDO/UNDO actions.
Record REDO and UNDO information for every update.
Sequential writes to log (usually kept on separate disk(s)).
Minimal info written to log multiple updates fit in a single log page.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 12

Three main principles of ARIES

1 Write-Ahead Logging

Record database changes in the log at stable storage before the actual
change.

2 Repeating History During Redo

After a crash, bring the system back to the exact state at crash time; undo
the transactions that were still active at crash time.

3 Logging Changes During Undo

Log the database changes during a transaction undo so that they are not
repeated in case of repeated failures and restarts (i.e., never undo an undo
action).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 13

Three main principles of ARIES

1 Write-Ahead Logging

Record database changes in the log at stable storage before the actual
change.

2 Repeating History During Redo

After a crash, bring the system back to the exact state at crash time; undo
the transactions that were still active at crash time.

3 Logging Changes During Undo

Log the database changes during a transaction undo so that they are not
repeated in case of repeated failures and restarts (i.e., never undo an undo
action).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 14

Three main principles of ARIES

1 Write-Ahead Logging

Record database changes in the log at stable storage before the actual
change.

2 Repeating History During Redo

After a crash, bring the system back to the exact state at crash time; undo
the transactions that were still active at crash time.

3 Logging Changes During Undo

Log the database changes during a transaction undo so that they are not
repeated in case of repeated failures and restarts (i.e., never undo an undo
action).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 15

Three main principles of ARIES

1 Write-Ahead Logging

Record database changes in the log at stable storage before the actual
change.

2 Repeating History During Redo

After a crash, bring the system back to the exact state at crash time; undo
the transactions that were still active at crash time.

3 Logging Changes During Undo

Log the database changes during a transaction undo so that they are not
repeated in case of repeated failures and restarts (i.e., never undo an undo
action).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 16

Write-Ahead Log (WAL)

The ARIES recovery method uses a ”write-ahead log”to implement the
necessary redundancy.

Mohan et al., ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging,
ACM TODS, 17(1), 1992.

WAL: Any change to a database object is first recorded in the log, which
must be written to stable storage before the change itself is written to
disk.

To ensure atomicity and prepare for undo, undo information must be written
to stable storage before a page update is written back to disk.
To ensure durability, redo information must be written to stable storage at
commit time (no-force policy: the on-disk data page may still contain old
information).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 17

Write-Ahead Log (WAL)

The ARIES recovery method uses a ”write-ahead log”to implement the
necessary redundancy.

Mohan et al., ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging,
ACM TODS, 17(1), 1992.

WAL: Any change to a database object is first recorded in the log, which
must be written to stable storage before the change itself is written to
disk.

To ensure atomicity and prepare for undo, undo information must be written
to stable storage before a page update is written back to disk.
To ensure durability, redo information must be written to stable storage at
commit time (no-force policy: the on-disk data page may still contain old
information).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 18

Write-Ahead Log (WAL)

The ARIES recovery method uses a ”write-ahead log”to implement the
necessary redundancy.

Mohan et al., ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging,
ACM TODS, 17(1), 1992.

WAL: Any change to a database object is first recorded in the log, which
must be written to stable storage before the change itself is written to
disk.

To ensure atomicity and prepare for undo, undo information must be written
to stable storage before a page update is written back to disk.
To ensure durability, redo information must be written to stable storage at
commit time (no-force policy: the on-disk data page may still contain old
information).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 19

Write-Ahead Log (WAL)

The ARIES recovery method uses a ”write-ahead log”to implement the
necessary redundancy.

Mohan et al., ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead Logging,
ACM TODS, 17(1), 1992.

WAL: Any change to a database object is first recorded in the log, which
must be written to stable storage before the change itself is written to
disk.

To ensure atomicity and prepare for undo, undo information must be written
to stable storage before a page update is written back to disk.
To ensure durability, redo information must be written to stable storage at
commit time (no-force policy: the on-disk data page may still contain old
information).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 20

Log Information

The log consists of entries in the following form:

< LSN,Type,TOD,PrevLSN,PageID,NextLSN,Redo,Undo >

LSN: Log Sequence Number: Monotonically increasing number to identify
each log record.

Type (Record Type): Begin, Commit, Abort, Update, Compensation

TID: Transaction Identifier

PrevLSN: Previous LSN of the same transaction

PageID: Page which was modified

NextLSN: Next LSN of the same transaction

Redo Information described by this log entry

Undo Information described by this log entry

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 21

Example of transactions and logs

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 22

Redo Information

ARIES assumes page-oriented redo

stores byte images of the pages

before and after the modification

Restore exact same pages as execution without failures

Undo Information

ARIES assumes logical undo

Record the actual tuple changes, e.g. account A increased by 50

Faster undo

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 23

Redo Information

ARIES assumes page-oriented redo

stores byte images of the pages

before and after the modification

Restore exact same pages as execution without failures

Undo Information

ARIES assumes logical undo

Record the actual tuple changes, e.g. account A increased by 50

Faster undo

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 24

Writing Log Records

For performance reasons, all log records are first written to volatile storage.

At certain times, the log is forced to stable storage up to a certain LSN:

Commit of a transaction for Redo
Page writing of uncommitted for Undo

Committed transaction = all log records (including commit) are on stable
storage

Normal Processing

During normal transaction processing, keep two pieces of information in
each transaction control block:

LastLSN: LSN of the last log record written for this transaction.
NextLSN: LSN of the next log record to be processed during rollback.

Whenever an update to a page p is performed

a log record r is written to the WAL, and
the LSN of r is recorded in the page header of p.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 25

Writing Log Records

For performance reasons, all log records are first written to volatile storage.

At certain times, the log is forced to stable storage up to a certain LSN:

Commit of a transaction for Redo
Page writing of uncommitted for Undo

Committed transaction = all log records (including commit) are on stable
storage

Normal Processing

During normal transaction processing, keep two pieces of information in
each transaction control block:

LastLSN: LSN of the last log record written for this transaction.
NextLSN: LSN of the next log record to be processed during rollback.

Whenever an update to a page p is performed

a log record r is written to the WAL, and
the LSN of r is recorded in the page header of p.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 26

ARIES Transaction Rollback

To roll back a transaction T after a transaction failure (e.g. ABORT):

Process the log in a backward fashion.
Start the undo operation at the log entry pointed to by the UNxt field in the
transaction control block of T.
Find the remaining log entries for T by following the Prev and UNxt fields in
the log.
Perform the changes in the Undo part of the log entry

Undo operations modify pages, too!

Log all undo operations to the WAL.
Use compensation log records (CLRs) for this purpose.
Note: We never undo an undo action, but we might need to redo an undo
action.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 27

ARIES Crash Recovery

Restart after a system failure is performed in three phases

1 Analysis Phase:

Read log in forward direction.
Determine all transactions that were active when the failure happened. Such
transactions are called ”losers”.

2 Redo Phase:

Replay the log (in forward direction) to bring the system into the state as of
the time of system failure.
Put äfter images̈ın place of before images
Also restores the losers

3 Undo Phase

Roll back all loser transactions, reading the log in a backward fashion
(similar to ”normal”rollback).

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 28

Media Recovery

To allow for recovery from non-volatile media failure, periodically back up
data to stable storage.

Can be done during normal processing, if WAL is archived, too.

Other approach: Use log to mirror database on a remote host (send log to
network and to stable storage).

Checkpointing

WAL file keeps growing unbounded

For recovery, we need to visit entire WAL file

Generate checkpoints with current transaction state

Recovery only from checkpoint
Bound WAL file and allow truncation

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

9. Reliability 9.1. Local Recovery Page 29

Media Recovery

To allow for recovery from non-volatile media failure, periodically back up
data to stable storage.

Can be done during normal processing, if WAL is archived, too.

Other approach: Use log to mirror database on a remote host (send log to
network and to stable storage).

Checkpointing

WAL file keeps growing unbounded

For recovery, we need to visit entire WAL file

Generate checkpoints with current transaction state

Recovery only from checkpoint
Bound WAL file and allow truncation

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer

