
10. Distributed Concurrency Control 10.3. Homogeneous Concurrency Control Page 29

10.3: Homogeneous Concurrency Control

Serializability by distributed 2-Phase Locking (2PL)

A transactions entry into the unlock-phase has to be synchronized among all sites the
transaction is being executed.

Primary Site 2PL:

One site is selected at which lock maintenance is performed exclusively.

This site thus has global knowledge and enforcing the 2PL rule for global and local
transactions is possible.

The lock manager simply has to refuse any further locking of a subtransaction Tij

whenever a subtransaction Tik has started unlocking already.

Much communication is resulting which may create a bottleneck at the primary site.

Example

S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
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Distributed 2PL:

When a server wants to start unlocking data items on behalf of a transaction, it
communicates with all other servers regarding the lock point of the other respective
subtransaction.

The server has to receive a locking completed-message from each of these servers.

This implies extra communication between servers.

Example

S1 : R1A W1A R2A W2A

S2 : R2B W2B R1B W1B
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Distributed Strong 2PL:

Every subtransaction of a global transaction and every local transaction holds locks until
commit.

Then by the 2-phase-commit protocol the 2PL-rule is enforced as a side-effect.

Applying strong 2PL the global 2PL-property is self-guaranteed without any explicit
measures!
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Locking protocols are prone to deadlocks!

Global deadlock
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Global deadlock detection is difficult. Detection strategies:

Centralized detection: Each site maintains its local wait-for graph. One distinguished site
is selected to which all local wait-for graphs are send periodically. The selected site
computes the union of all local wait-for graphs and checks for deadlocks.

Time-out based detection: Whenever during a wait a time-out occurs, the respective
transaction decides for a deadlock and aborts itself.

Edge chasing: Whenever a transaction T waits for a transaction T ′, it sends its
identification to T ′. Whenever a transaction T ′ receives such a message, it sends the
identification of such T to all transctions it is waiting for. If a transaction recieves its
own identification, it decides for a deadlock and it aborts itself.

Path pushing:

(i) Each server that has a waits-for path from transaction ti to transaction tj such that
Ti has an incoming waits-for-message edge and Tj has an outgoing waits-for-message
edge sends that path to the server along the outgoing edge.

(ii) Upon receiving a path the server concatenats this with the local paths that already
exist, and forwards the result along its outgoing edges again. If there exists a cycle
among k servers, at least one of them will detect the cycle in at most k rounds.
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Serializabilty by assigning timestamps to transactions

Global and local transactions are timestamped; all subtransactions of a
transaction obtain the same timestamp.

Timestamps must be system-wide unique and based on synchronized clocks.

To be system-wide unique, timestamps are values of local clocks concatenated
with the site ID.

Time Stamp Protocol TS

To each transaction T it is assigned a unique timestamp Z(T ) when it is started.

A transaction T must not write an object which has been read by any T ′ where
Z(T ′) > Z(T ).

A transaction T must not write an object which has been written by any T ′

where Z(T ′) > Z(T ).

A transaction T must not read an object which has been written by any T ′

where Z(T ′) > Z(T ).
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The TS-protocol guarantees serializability of schedules.

Let S be a global schedule of a set of transactions T = {T1, . . . ,Tn}, which all apply TS.

Assume, S is not serializable, i.e. the conflict graph G(S) is cyclic, where w.l.o.g.
T1 → T2 → · · · → Tk → T1.

Each edge T → T ′ implies T and T ′ have conflicting actions, where the action of T
preceds the one of T ′.

Because of TS we know Z(T ) < Z(T ′). This implies the following:

Z(T1) < Z(T2) < . . . < Z(Tn) < Z(T1),

a contradiction. Therefore S is serializable.
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Dealing with global timestamp ordering

Global time with total ordering impossible in distributed systems: message
delays, clock drift, ...

Remember Lamport happened-before relationship (Chapter 4)

Local ordering on same node: e ⇒ e′ if e precedes e′ on the same node
Message transfers: e ⇒ e′ if e is the send event and e′ the receive event of
the same message
Transitivity: e ⇒ e′ if ∃e′’ so that e ⇒ e′′ ∧ e′′ ⇒ e′

Lamport clocks:

Each site keeps a counter (acting as clock)
Each local step increases the clock
When sending a message, attach the local timestamp
When receiving a message, take the maximum of local time and received
time and add 1
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Using Lamport clocks with TS

Express logical time as (c , i): c is clock/counter, i transaction number

(c , i) represents time after an operations

Use remote read/write operations to “piggyback” time: Increase time
before/after transmission

How/why does work?

Operations require a happened-before relationship with transactions

Lamport clocks (with i as tie breaker) make sure that two operations do
not get the same timestamp’
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Lock-based vs timestamp-based approaches

Both approaches guarantee serializability

Lock-based approaches bear the cost of locks and risk deadlocks

Timestamp-based approaches are deadlock-free, but face the risk of restarts

All the approaches seen so far are pessimistic: check if an operations is
possible, then execute it

Extensions are possible in many ways:

Multi-version protocols: writes create new versions, operations pick up more
recent versions if allowed
Optimistic protocols: Perform all operations, check at end of transaction if
conflicts had occurred
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10.4: Heterogeneous Concurrency Control

Local and global transaction managers

Each server runs its own local transaction manager which guarantees local
serializability, i.e. the serializable execution of its local transactions and
subtransactions.

To guarantee global serializability a global transaction manager controls the
execution of the global transactions. This could either be based on ordering the
commit of the transaction, or by introducing artificial data objects called tickets
which have to be accessed by the subtransactions.
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Global serializability through local guarantees: rigorous local schedules

Rigorous schedules

A local schedule S = (OPS , <S) of a set of complete transactions is rigorous if for all
involved transactions (local and subtransactions) Ti ,Tj there holds:

Let pj ∈ OPj , qi ∈ OPi , i 6= j such that (pj , qi ) ∈ conf (S). Then either aj <S qi
or cj <S qi .

Commit-deferred transaction

A global transaction T is commit-deferred if its commit action is sent by the global
transaction manager to the local sites of T only after the local executions of all
subtransactions of T at that sites have been acknowledged.

Commit-deferment is achieved as a side-effect of the 2-phase-commit protocol.
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Examples

Consider two servers where D1 = {A,B} and D2 = {C ,D}. We have the following
transactions:

global : T1 = WA WD
T2 = WC WB

local : T3 = RA RB
T4 = RC RD

We have the following local schedules:

S1 : W1A c1 R3A R3B c3 W2B c2

S2 : W2C c2 R4C R4D c4 W1D c1

Even though the local schedules are serializable, the two global transactions are not
executed in a serializable manner. The local schedules are rigorous, however not
commit-deferred.
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Lemma

A schedule is serializable, whenever it is rigorous.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic
conflict graph, though rigorousness holds. As a commit is the final action of a
transaction, rigorousness makes such a cycle impossible.

Theorem

Let S be a global history for local histories S1, . . . , Sn. If Si rigorous, 1 ≤ i ≤ n and all
global transactions are commit-deferred, then S is globally serializable.

Sketch of proof: Assume the contrary. Then there exists a history which has a cyclic
conflict graph, though rigorousness and commit-deferment hold. As rigorousness
guarantees local serializability, such a cycle must involve at least two sites. As a commit
is the final action of a transaction, commit-deferment makes such a cycle impossible.

Because of the 2-phase-commit protocol, under rigorousness global serializability
practically comes for free!
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Global serializability through explicit measures: tickets

Ticket-based concurrency control

Each server guarantees serializable local schedules in a way unknown for the
global transactions.

Each server maintains a special counter as database object, which is called ticket.
Each subtransaction of a global transaction being executed at that server
increments (reads and writes) the ticket (take-a-ticket-Operation). Doing so we
introduce explicit conflicts between global transactions running at the same
server.

The global transaction manager guarantees that the order in which the tickets are
accessed by the subtransactions will imply a linear order on the global
transactions.
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Applying ticketing by examples

By Ij we denote the ticket at server j .

Let T1 = R1A R1D and T2 = R2B R2C be global transactions and let
T3 = R3A R3B W3A W3B and T4 = R4D W4D R4C W4C be local transactions.

S1 : R1(I1) W1(I1) R1A R3A R3B W3A W3B R2(I1) W2(I1) R2B
S2 : R4D W4D R1(I2) W1(I2) R1D R2(I2) W2(I2) R2C R4C W4C

Not serializable - could be detected at server 2.

Let T1 = R1A W1B and T2 = R2B W2A be global transactions.

S1 : R1(I1) W1(I1) R1A R2(I1) W2(I1) W2A
S2 : R2(I2) W2(I2) R2B R1(I2) W1(I2) W1B

Not serializable, could not be detected neither at server 1 nor at server 2, however the
order of take-a-ticket operations does not imply a linear order on the global transactions.
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