12. Real-World Considerations

Obervations

m CAP theorem puts a natural limit on classical distributed transactions

m Maintaining consistency very expensive due to large number of messages (high
latency)

m Web-facing datamanagement poses new challenges:

Large scalability (towards billions of users)

High availability (24x7 operations, global use)

Low response times

Write-intensive operations (shopping baskets, social media)

Approaches

m NoSQL systems (2005 - now): simple data model, limited operations, reduced
consistency

m NewSQL systems (2010 - now): SQL+ACID+scalability

—> very active area in research and product development

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12.1: NoSQL

Overview

m Catch-all phrase for basically all non-relational and/or non-ACID systems
m Very promiment subclass: Distributed Key/Value-Stores

® automatic partitioning and replication

relaxed and tuneable consistency: trading off availability and consistency

Examples: Apache Cassandra, MongoDB, ...

1970: NoSQL = We have no SQL
1980: NoSQL = Know SQL
2000: NosSQL = No sQL!

2005: NosQL = Not only SQL
2013: NoSQL = No, SQL!
(R)IDB(MS)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr.

Peter Fischer



12. Real-World Considerations and Systems

Cassandra: Background and Concepts

m Based on Amazon Dynamo/Google BigTable ideas
m Open-source software
m Key-value store distributed across nodes by key

m Not a relational table with many column, many access possibilities
m Instead a key—rvalue mapping like in a hash table

m A value can have a complex structure as it is inside the node - in Cassandra it is
columns and super columns

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

Partitioning and Replication

m Consistent Hashing: Hash Keys and node IDs mapped to (same) circled space

Each node covers a segment of the rings

Easy additions/removal and balancing

m content replicated on N subsequent nodes of the ring

Key,g hosted in B,
C,D

Virtual node D is hosting
Keys, Keygc, Keyep

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

Consistency Levels

m CAP theorem allows 2 out of 3
m (C)onsistency
m (A)vailability
m (P)artition tolerance

Options

m CA: corruption possible
m CP: not available if any nodes are down/blocked
m AP: always available but clients may not always read most recent updates

Most systems provide CP or AP (why not CA?)

m Cassandra prefers AP but makes " C versus A" configurable by allowing the user
to specify a consistency level for each operation

m Consistency levels are handled by setting the quorum for read and write operations

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

Dealing with eventual consistency

m When W < N (not all replicas are updated) the update is propagated in
background
m Version resolution:

m Each value in a database has a timestamp = key, value, timestamp

m The timestamp is the timestamp of the latest update of the value (the client
must provide a timestamp with each update)

® When an update is propagated, the latest timestamp wins

m There are two mechanisms to propagate updates:

m Read repair: hot keys
m Anti-Entropy: cold keys

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

Read Repair

m Perform read on multiple replicas.
m Perform reconciliation (e.g. pick the most recent)

m Update all read replicas to the chosen version

Anti-Entropy

m AE is used to repair cold keys - keys that have not been read, since they were last
written
m AE works as follows:

m |t generates Merkle Trees for tables periodically

m These trees are then exchanged with remote nodes using a gossip protocol

m When ranges in the trees disagree, the corresponding data are transferred
between replicas to repair those ranges

N.B. Merkle Tree (or hash trees ) are a compact representation of data for
comparison:

m A Merkle tree is a hash tree where leaves are hashes of individual values.
m Parent nodes higher in the tree are hashes of their respective children.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

12.2: NewSQL

Overview

m Absence of transactional guarantees cumbersome for developers

m Focus on getting as many SQL/ACID properities while providing (close to)
NoSQL scalability

m Main directions:

speeding up/scaling up closely-coupled systems
"Tweaking” consistency models and coordination
clever implementations

A history of databases in No-tation
1970: NoSQL = We have no SQL
1980: NoSQL = Know SQL
2000: NoSQL = No SQL!

2005: NoSQL = Not only SQL
2013: NoSQL = No, SQL!
(R)DB(MS)

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems

H-Store/Volt-DB: Concepts

m Aimed at transaction-heavy workloads, providing ACID and high scalability
m Breaks several assumptions how do DB design with updates

m Aimed at small-scale clusteres (no latency penalty), but providing very high
speeds

Design Considerations

® Main-Memory Databases, since most transactional workloads need less than 1 TB
m Single-Thread per core execution model

m No delays from disk 1/O

m No long-running transactions allowed: typical update queries take few
milliseconds!

m reduces synchronisation cost

m Availability via replication, not log shipping

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



Implementation

m Shared-nothing architecture over a cluster
m Further shared-nothing decomposition among CPU cores

m dedicated data structures: tables, indexes
m transactions run sequentially/serial on a core

m Transactions are known in advance

m Expressed as stored procedures
m Information on data access drives scheduling and replication

m Transactions are executed as much as possible on a single site

—> very high transaction rates: several 100K transactions per second per node

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



Google Spanner/F1

m Massively distributed database, aimed at million servers over the whole world
m Provide synchronous replication

m ACID-style transactional semantics

Replication

m Replicas coordinated with Paxos
m Application specify

m Datacenters

m Distance from application (read latency)

m Distances among replicas (write latency)

m Number of replicas (durability, availability, read performance);

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



Synchronisation via Time

m Global time hard to achieve!
m Accept bounded uncertainty

m Establish via GPS and atomic clocks
m use interval time to define now, before, after

m Use Timestamp-based synchronisation and two-phase commit

Performance

m High commit latency incurred by 2PC over distributed replicas
m Latency hiding via

m Hierarchical schema: provide partitoning/placement info at schema level (US
data at US, European data in the EU)

m Efficient transfer: protocol buffers

m Batch reading and writing

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



	Real-World Considerations and Systems
	NoSQL
	NewSQL


