
12. Real-World Considerations and Systems Page 1

12. Real-World Considerations
Obervations

CAP theorem puts a natural limit on classical distributed transactions

Maintaining consistency very expensive due to large number of messages (high
latency)

Web-facing datamanagement poses new challenges:

Large scalability (towards billions of users)
High availability (24x7 operations, global use)
Low response times
Write-intensive operations (shopping baskets, social media)

Approaches

NoSQL systems (2005 - now): simple data model, limited operations, reduced
consistency

NewSQL systems (2010 - now): SQL+ACID+scalability

=⇒ very active area in research and product development

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 2

12.1: NoSQL

Overview

Catch-all phrase for basically all non-relational and/or non-ACID systems

Very promiment subclass: Distributed Key/Value-Stores

automatic partitioning and replication

relaxed and tuneable consistency: trading off availability and consistency

Examples: Apache Cassandra, MongoDB, ...

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 3

Cassandra: Background and Concepts

Based on Amazon Dynamo/Google BigTable ideas

Open-source software

Key-value store distributed across nodes by key

Not a relational table with many column, many access possibilities
Instead a key→value mapping like in a hash table

A value can have a complex structure as it is inside the node - in Cassandra it is
columns and super columns

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 4

Partitioning and Replication

Consistent Hashing: Hash Keys and node IDs mapped to (same) circled space

Each node covers a segment of the rings

Easy additions/removal and balancing

content replicated on N subsequent nodes of the ring

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 5

Consistency Levels

CAP theorem allows 2 out of 3

(C)onsistency
(A)vailability
(P)artition tolerance

Options

CA: corruption possible
CP: not available if any nodes are down/blocked
AP: always available but clients may not always read most recent updates

Most systems provide CP or AP (why not CA?)

Cassandra prefers AP but makes ”C versus A” configurable by allowing the user
to specify a consistency level for each operation

Consistency levels are handled by setting the quorum for read and write operations

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 6

Dealing with eventual consistency

When W < N (not all replicas are updated) the update is propagated in
background

Version resolution:

Each value in a database has a timestamp ⇒ key, value, timestamp
The timestamp is the timestamp of the latest update of the value (the client
must provide a timestamp with each update)
When an update is propagated, the latest timestamp wins

There are two mechanisms to propagate updates:

Read repair: hot keys
Anti-Entropy: cold keys

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.1. NoSQL Page 7

Read Repair

Perform read on multiple replicas.

Perform reconciliation (e.g. pick the most recent)

Update all read replicas to the chosen version

Anti-Entropy

AE is used to repair cold keys - keys that have not been read, since they were last
written

AE works as follows:

It generates Merkle Trees for tables periodically
These trees are then exchanged with remote nodes using a gossip protocol
When ranges in the trees disagree, the corresponding data are transferred
between replicas to repair those ranges

N.B. Merkle Tree (or hash trees ) are a compact representation of data for
comparison:

A Merkle tree is a hash tree where leaves are hashes of individual values.
Parent nodes higher in the tree are hashes of their respective children.

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.2. NewSQL Page 8

12.2: NewSQL

Overview

Absence of transactional guarantees cumbersome for developers

Focus on getting as many SQL/ACID properities while providing (close to)
NoSQL scalability

Main directions:

1 speeding up/scaling up closely-coupled systems
2 ”Tweaking” consistency models and coordination
3 clever implementations

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.2. NewSQL Page 9

H-Store/Volt-DB: Concepts

Aimed at transaction-heavy workloads, providing ACID and high scalability

Breaks several assumptions how do DB design with updates

Aimed at small-scale clusteres (no latency penalty), but providing very high
speeds

Design Considerations

Main-Memory Databases, since most transactional workloads need less than 1 TB

Single-Thread per core execution model

No delays from disk I/O
No long-running transactions allowed: typical update queries take few
milliseconds!
reduces synchronisation cost

Availability via replication, not log shipping

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.2. NewSQL Page 10

Implementation

Shared-nothing architecture over a cluster

Further shared-nothing decomposition among CPU cores

dedicated data structures: tables, indexes
transactions run sequentially/serial on a core

Transactions are known in advance

Expressed as stored procedures
Information on data access drives scheduling and replication

Transactions are executed as much as possible on a single site

=⇒ very high transaction rates: several 100K transactions per second per node

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.2. NewSQL Page 11

Google Spanner/F1

Massively distributed database, aimed at million servers over the whole world

Provide synchronous replication

ACID-style transactional semantics

Replication

Replicas coordinated with Paxos

Application specify

Datacenters
Distance from application (read latency)
Distances among replicas (write latency)
Number of replicas (durability, availability, read performance)¡

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer



12. Real-World Considerations and Systems 12.2. NewSQL Page 12

Synchronisation via Time

Global time hard to achieve!

Accept bounded uncertainty

Establish via GPS and atomic clocks
use interval time to define now, before, after

Use Timestamp-based synchronisation and two-phase commit

Performance

High commit latency incurred by 2PC over distributed replicas

Latency hiding via

Hierarchical schema: provide partitoning/placement info at schema level (US
data at US, European data in the EU)
Efficient transfer: protocol buffers
Batch reading and writing

Distributed Systems Part 2 Distributed Applications and Data Management Prof. Dr. Peter Fischer


	Real-World Considerations and Systems
	NoSQL
	NewSQL


