
Albert-Ludwigs-Universität
Institut für Informatik
Prof. Dr. F. Kuhn July 07, 2015

Network Algorithms, Summer Term 2015

Problem Set 10 – Sample Solution

Exercise 1: Determining the Median

As stated in the hint, we start with initializing the nodes to give them IDs from 1, . . . , n. Now the
node with ID i transmits its token in time slot i. Each node uses two variables to count the number of
tokens which were transmitted with a higher or lower number. After the execution each node knows
how many tokens were larger/smaller than its own. Thus, the node whose token is the median can
simply transmit it afterwards.
Let us briefly analyze the time and space used by this. We know from the lecture that initialization
takes O(n) rounds. The sending of each token afterwards takes exactly n rounds, i.e., does not increase
the asymptotic runtime.
Each node needs to store a new ID of up to n, i.e., needs O(log n) space. The variables from the
algorithm can also be stored by using O(log n). After the initialization, we require that each node
keeps two counters to count how many numbers were larger/smaller than our own. But since we do
not need to store the values, this requires only log n space.
The correctness follows by the construction of the algorithm. The unique node whose upper and lower
counter has the same value, can broadcast it and thus all nodes are aware of it.

Exercise 2: Finding Maximum

1: while TRUE do
2: elect leader
3: leader broadcasts value
4: if If own value is bigger then
5: broadcast own value
6: end if
7: if no transmitter then
8: leader has max
9: else if single transmitter then

10: transmitter has max
11: else if own value ≤ leader then
12: exit
13: end if
14: end while

A round is good if at least half the vertices exit in that round. At most log(n) good rounds are needed
to find the maximum. Since the leaders are chosen randomly and independently in each round, a
round is good with probability at least 1

2 . Let the random variable G be the number of good rounds
after 4c · log(n) rounds. The expectation of G is bound by

E[G] ≥ 1

2
4c · log(n) = 2c · log(n) ≥ 2 · log(n)

1



Using the Chernoff bound and setting δ = 1
2 we get the following as probability of failure

Pr[G < log(n)] = Pr[G < (1− δ)2 · log(n)]

≤ Pr[G < (1− δ)E[G]]

≤ e
δ2

2
E[G]

= e−
1
4
c log(n)

= n−
c
4

Additionally we have a probability of failure of n−c
′

in every leader election. Setting c′ = c
4 and using

the union bound we get

Pr[fail] = P

[
{G < log(n)} ∪

⋃
i

{leader election in round i failed}

]
≤ (1 + c · log(n))n−c

′

≤ 2c · log(n)n−c
′

ignore n = 1 because Pr ≤ 1−c

< 2log(2c)·log(n)n−c
′

= n−c
′+log(2c)

= n−α

where α is independent of n and can be set arbitrarily high by choosing the constant c′.

2


