Network Algorithms, Summer Term 2015 Problem Set 7 - Sample Solution

Exercise 1: Coloring Rings

1. Let $n \geq 4$ be even, and $r=n / 2-2$. Consider the r-neighborhood graph $\mathcal{N}_{r}\left(R_{n}\right)$ of the ring R_{n} with n nodes. Note that for $r=n / 2-2$ the r-neighborhood of a node contains all but three identifiers, ordered according to their occurrence.
Then it follows from Lemma 7.5 that the ring can be colored legally with two colors in r rounds if and only if $\mathcal{N}_{r}\left(R_{n}\right)$ is bipartite, i.e., the r-neighborhood contains no odd cycle. However, there is one of length $n-1$:
$(1, \ldots, n-3),(2, \ldots, n-2),(3, \ldots, n-1),(4, \ldots, n),(5, \ldots, n, 1), \ldots$, $(n, 1,2 \ldots, n-4),(1, \ldots, n-3)$.
Thus no coloring of the ring with 2 colors is possible in less than $n / 2-1$ rounds.
2. Each node informs its two neighbors whether it is in the MIS or not and additionally sends its identifier. If node v is in the MIS, it sets its color to 1 . If v is not in the MIS but both of its neighbors are, then v sets its color to 2 . If v has a neighbor w not in the MIS, v chooses color 2 if its identifier is larger than w 's identifier, otherwise v chooses the color 3 .

The algorithm only needs one communication round. Correctness follows from the fact that either a node v is in the MIS or at least one of its neighbors is. Thus, a MIS can at best be computed one round faster than a 3 -coloring, which implies that computing a MIS costs at least ($\left.\log ^{*} n\right) / 2-2$ rounds (since coloring a directed ring with 3 or less colors needs at least $\left(\log ^{*} n\right) / 2-1$ rounds. See Theorem 7.11).

