
Chapter 9

Dynamic Networks

Many large-scale distributed systems and networks are dynamic. In some net-
works, e.g., peer-to-peer, nodes participate only for a short period of time, and
the topology can change at a high rate. In wireless ad-hoc networks, nodes are
mobile and move around. In this chapter, we will study how to solve some basic
tasks if the network is dynamic. Under what conditions is it possible to compute
an accurate estimate of the size or some other property of the system? How
e�ciently can information be disseminated reliably in the network? To what
extent does stability in the communication graph help to solve these problems?

There are various reasons why networks can change over time and as a con-
sequence, there also is a wide range of possible models for dynamic networks.
Nodes might join or leave a distributed system. Some components or commu-
nication links may fail in di↵erent ways. Especially if the network devices are
mobile, the connectivity between them can change. Dynamic changes can occur
constantly or they might be infrequent enough so that the system can adapt to
each change individually.

9.1 Synchronous Edge-Dynamic Networks

We will look at a synchronous dynamic network model in which the graph can
change from round to round in a worst-case manner. To simplify things (and
to make the problems we study well-defined), we assume that the set of nodes
in the network is fixed and does not change. However, we will make almost
no assumptions how the set of edges changes over time. Formally, we model
a synchronous dynamic network by a dynamic graph G(r) = (V,E(r)), where
V is a static set of nodes, and E(r) is the set of (undirected) edges in round
r 2 {1, 2, 3, . . .}. We assume that the graph G(r) is connected in each round r.
Otherwise, we allow the graph to change arbitrarily from round to round.

For simplicity, we restrict our attention to deterministic algorithms. Nodes
communicate with each other using anonymous broadcast : At the beginning of
a round r, each node u decides what message to broadcast based on its internal
state; at the same time, an adversary chooses a set E(r) of edges for the round.
As in standard synchronous message passing, all nodes v for which {u, v} 2 E(r)
receive the message broadcast by node u in round r and each node can perform
arbitrary local computations upon receiving the messages from its neighbors.

95



96 CHAPTER 9. DYNAMIC NETWORKS

We assume that all nodes in the network have a unique O(log n) bit identifier
(ID).

In general, we assume that nodes might not all start a computation at the
same time and that nodes might be woken up (activated) spontaneously. How-
ever, we assume that each node wakes up at the latest when it receives the first
message. We refer to this general case as asynchronous start and to the special
case where all nodes start a computation at time 0 as synchronous start.

9.2 Problem Definitions

We study the following two problems.

Counting. An algorithm is said to solve the counting problem if whenever it is
executed in a dynamic graph comprising n nodes, all nodes eventually terminate
and output n.

k-token dissemination. In an instance of the k-token dissemination prob-
lem, there are k tokens (pieces of information) and each token is initially known
by at least one node v 2 V (in general, we allows a node to hold more than one
token initially). An algorithm solves k-token dissemination if all nodes eventu-
ally terminate and output the complete set of all k tokens. We usually assume
that each token in the nodes’ input is represented using O(log n) bits. Nodes
may or may not know k, depending on the context. Of particular interest is
all-to-all token dissemination, a special case where k = n and each node initially
knows exactly one token.

9.3 Basic Information Dissemination

To start, let us study how a single piece of information is propagated through
a dynamic network. As described, we assume that we have a dynamic network
graph G with n nodes such that G(r) is connected for all rounds r � 1. Further
assume that there is a single piece of information (token), which is initially
known by a single node.

Theorem 9.1. Assume that there is a single token in the network. Further
assume that at time 0 at least one node (which starts at time 0) knows the token
and that once any node v knows the token, it broadcasts it in every round. In a
dynamic graph G with n nodes, after r  n�1 rounds, at least r+1 nodes know
the token. Hence, in particular after n� 1 rounds, all nodes know the token.

Proof. We can proof the theorem by induction on r. Let T (r) be the set of
nodes that know the token after r rounds. We need to show that for all r � 0,
|T (r)| � min {r + 1, n}. Because we assume that at time 0 at least one node
knows the token, clearly, |T (0)| � 1. For the induction step, assume that after
r rounds, |T (r)| � min {r + 1, n}. If T (r) = V , we have |T (r+ 1)| � |T (r)| = n
and we are done. Otherwise, we have V \T (r) 6= ;. Therefore, by the assumption
that G(r+1) is connected, there must be two nodes u 2 T (r) and v 2 V \ T (r)
such that {u, v} 2 E(r + 1). Hence, in round r + 1, node v gets the token and
therefore |T (r + 1)| � |T (r)|+ 1 � min {r + 2, n}.
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Remarks:

• Note that Theorem 9.1 only shows that after n � 1 rounds all nodes
know the token. If the nodes do not know n or an upper bound on n,
they do not know if all nodes know the token.

• We can apply the above techniques also if there is more than one token
in the network, provided that tokens form a totally-ordered set and
nodes forward the smallest (or largest) token they know. It is then
guaranteed (in the asynchronous start case) that some node with the
smallest (resp. largest) token starts participating after at most n� 1
rounds and thus, the smallest (resp. largest) token in the network will
be known by all nodes after at most 2n � 2 rounds. In the case of
synchronous start, all nodes know the smallest (or largest) token after
n� 1 rounds. Note, however, that also in this case nodes do not know
when they know the smallest or largest token.

The next theorem shows that if the nodes know n, the idea of last remark
can be used to solve k-token dissemination for arbitrary k.

Theorem 9.2. If all nodes know n, they can solve k-token dissemination in
O(kn) rounds.

Proof. There is always a total order on the set of all possible tokens (e.g., by
using their bit representation). We can thus use the idea from the last remark
above. After 2n � 2 rounds, all nodes know the smallest token and because
all nodes know n, all nodes also know when these 2n � 2 rounds are over. In
the following, in blocks of n� 1 rounds, all nodes can learn the smallest of the
remaining tokens until all nodes know all the tokens after at most (k+1)(n�1)
rounds.

Remarks:

• The above algorithms seems to use a brute-force approach to solve
the token dissemination problem and the resulting running time might
seem very large. If we have stronger connectivity requirements about
the dynamic graph, the problem can be solved in a faster way. A
dynamic graph is called T -interval connected if for any T consecutive
round r, r+ 1, . . . , r+ T � 1, there is a connected subgraph which is
present throughout these T rounds. It can then be shown that k-token
dissemination can be solved in O(n+ nk/T ) rounds.

9.4 Counting the Number of Nodes

The next theorem shows that for the general asynchronous start case, assuming
that the graph is connected in every round does not su�ce to obtain anything
better than what is stated by the above theorems. If nodes do not know n or
an upper bound on n initially, they cannot find n or an upper bound on n.

Theorem 9.3. Counting is impossible in a dynamic graph G(r) = (V,E(r)) as
defined above with asynchronous start.
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Proof. Suppose by way of contradiction that A is a protocol for solving the
counting problem and assume that A requires at most t(n) rounds in a dynamic
graph of size n. Let n0 = max {t(n) + 1, n+ 1}. We will show that the protocol
cannot distinguish a static line of length n from a dynamically changing line of
length n0.

Given a sequence A = a
1

� . . . � am, let shift(A, r) denote the cyclic left-shift
of A in which the first r symbols (r � 0) are removed from the beginning of
the sequence and appended to the end. Consider an execution in a dynamic
line of length n0, where the line in round r is composed of two adjacent sections
A � Br, where A = 0 � . . . � (n � 1) remains static throughout the execution,
and B(r) = shift(n � . . . � (n0 � 1), r) is left-shifted by one in every round. The
computation is initiated by node 0 and all other nodes are initially asleep. We
claim that the execution of the protocol in the dynamic graph G = A � B(r)
is indistinguishable in the eyes of nodes 0, . . . , n � 1 from an execution of the
protocol in the static line of length n (that is, the network comprising section
A alone). This is proven by induction on the round number, using the fact that
throughout rounds 0, . . . , t(n)� 1 none of the nodes in section A ever receives a
message from a node in section B: although one node in section B is awakened
in every round, this node is immediately removed and attached at the end of
section B, where it cannot communicate with the nodes in section A. Thus,
the protocol cannot distinguish the dynamic graph A from the dynamic graph
A �B(r), and it produces the wrong output in one of the two graphs.

Remark:

• Theorem 9.3 in particular implies that if no upper bound on the num-
ber of nodes is known also k-token dissemination cannot be solved in
the asynchronous start case. The nodes could otherwise use their n
IDs as n tokens and as soon as all nodes know all n tokens, the nodes
also know n. Recall that in the problem definition, we require nodes
to terminate.

There are two ways to avoid the impossibility of Theorem 9.3. One can
strengthen the connectivity condition and require that for any two consecutive
rounds r and r + 1, the graph (V,E(r) \ E(r + 1)) is connected. That is, for
any two consecutive round, there is some connected subgraph which is present
in both rounds. Intuitively, this condition always allows at least some of the
nodes which are woken up in a given round r to report back to some node in
round r+1. As this assumption makes things much more technical, we instead
consider the synchronous start case where all nodes start the protocol at time
0 (with round 1). We will see that this is su�cient to compute the number of
nodes and thus by Theorem 9.2 to also solve the k-token dissemination problem.

We study the following simple protocol, where all nodes try to collect the
IDs of all the nodes. All nodes maintain a set A containing all the IDs they
have collected so far. In every round, each node broadcasts its current set A
and it adds all IDs it receives to A. Nodes terminate when they first reach a
round r in which |A|  r.
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A {self };
for r = 1, 2, . . . do

broadcast A;
receive B

1

, . . . , Bs from neighbors;
A A [B

1

[ . . . [Bs;
if |A|  r then terminate and output |A|;
;

end

Algorithm 1: Counting in linear time.

Before analyzing Algorithm 1, we fix some notation that will help to argue
about the algorithm. Each node u 2 V keeps track of a set A of the IDs known
to u. We use Au(r) to denote the value of A at node u at the end of round r
(and thus also immediately before round r + 1 starts).

Lemma 9.4. Assume that we are given a dynamic graph G = (V,E) which is
connected in every round r. If all nodes in V execute Algorithm 1 and if all
nodes together start at time 0, for all u 2 V and all r � 0, we have |Au(r)| �
min {r + 1, n}.

Proof. For a node v 2 V and any times t
1

� 0 and t
2

� t
1

, we define Iv(t1, t2)
to be the set of nodes u which influence v if only considering the time interval
[t
1

, t
2

] (i.e., including the rounds t
1

+1, . . . , t
2

). More formally, Iv(t1, t2) contains
all nodes u 2 V such that a message started at time t

1

(i.e., right before round
t
1

+ 1) at node u can reach node v by time t
2

. For all t � 1, we clearly
have Iv(t, t) = {v}. Further, for 0  r < t, Iv

�
t � (r + 1), t

�
can be defined as

Iv
�
t�(r+1), t

�
:= Iv(t�r, t)[{u 2 V : 9w 2 Iv(t� r, t) s.t. {u,w} 2 E(t� r)},

i.e., all the nodes in Iv(t� r, t) and all the nodes for which u and Iv(t� r, t) are
connected by an edge in round t� r.

Note that the set of nodes which a node v knows at time t is exactly
the nodes in Iv(0, t) and to prove the lemma, it therefore su�ces to show
that for all v and all t � 0 and all 0  r  t, we have |Iv(t � r, t)| �
min {r + 1, n}. As Iv(t, t) = {v}, the statement is clearly true for r = 0 (for
any t). For r > 0, the recursive definition of Iv yields that Iv(t � r, t) =
Iv
�
t�(r�1), t

�[�u 2 V : 9w 2 Iv
�
t� (r � 1), t

�
s.t. {u,w} 2 E(t� (r � 1))

 
.

if Iv
�
t�(r�1), t� = V , we also have Iv(t�r, t) = V and therefore |Iv(t�r, t)| = n.

Otherwise, the connectivity requirement guarantees that in round t � (r � 1),
there is at least one edge connecting the nodes in Iv

�
t � (r � 1), t) with the

remaining nodes and therefore Iv(t � r, t) contains at least one node which is
not contained in Iv

�
t� (r � 1), t

�
.

Theorem 9.5. In an dynamic graph G which is connected in every round, using
Algorithm 1 and assuming synchronous start, all nodes can compute the number
of nodes (and terminate) in n rounds.

Proof. Follows directly from Lemma 9.4. For all nodes u, |Au(r)| � r + 1 > r
for all r < n and |Au(n)| = |Au(n� 1)| = n.
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Remarks:

• If for any two consecutive rounds r and r+1, the graph G(r)\G(r+
1) := (V,E(r) \ E(r + 1)) is connected (i.e., the dynamic graph is 2-
interval connected), a similar algorithm also solves the counting prob-
lem for the more general asynchronous start assumption.

9.5 Token Dissemination Lower Bound

We have seen that the k-token dissemination problem can be solved in n rounds
in the synchronous start case even if n is not known to the algorithm. However,
this algorithm requires nodes to send very large messages. As nodes always
broadcast all IDs and tokens they know, a message can consist of n node IDs
and k tokens. If n is known, we have seen a simple algorithm in which every
message consists of at most one token. Hence, if tokens consist of O(log n) bits,
all messages have size O(log n). However, the running time of this anelgorithm
is O(nk). In the following, we will see that for deterministic so-called token-
forwarding algorithms, the trivial O(nk) upper bound can at best be beaten by
a logarithmic factor. A token-forwarding algorithm is an algorithm in which in
each round, each node can only broadcast a subset of the tokens it knows. It is
for example not allowed to broadcast a combination (e.g., the bitwise XOR) of
several tokens. For our lower bound, we assume that in every round, each node
is only allowed to broadcast one of the tokens it knows.

Analogously to Algorithm 1, let Av(r) be the set of tokens known by node
v after r rounds. Consider round r + 1. Before round r + 1, node v knows the
tokens in Av(r) and therefore in round r + 1, v can only broadcast some token
xv(r+1) in Av(r). Because we only consider deterministic algorithms, for each
node v, Av(r) and the token xv(r+ 1) sent by v in round r+ 1 only depend on
the initial states of all nodes and the graph sequence of the first r rounds. The
adversary which constructs the sequence of graphs therefore knows Av(r) and
xv(r + 1) of all nodes v when constructing the graph for round r + 1. We will
make use of this and show how to construct a graph on which only a few new
tokens can be learned.

As long as all (or most) nodes only know a small number of tokens, it is
not possible to show that in any given round, the total progress is small and
only a few tokens can be learnt in the whole network network. Consider for
example the case where there are n tokens and in the beginning, every node has
exactly one token. Then, already in the first round, every node learns at least
one addition token. In order to only consider states where all nodes already
know many tokens, we use an additional trick. For each node v 2 V , we define
an additional token set Rv. For any r � 0, we say that node v learns a token ⌧
in round r+1 i↵ r 62 Av(r)[Rv, i.e., we essentially pretend that node v knows
all tokens in Rv from the beginning.

Consider a round r + 1 and two nodes u and v. Recall that xu(r + 1) and
xv(r + 1) are the tokens broadcast by u and v in round r + 1, respectively. If
xu 2 Av(r) [ Rv and if xv 2 Au(r) [ Ru, even if u and v are connected by an
edge in G(r + 1), they cannot learn a token from each other in round r + 1.
In this case, we say that the edge {u, v} is a free edge in round r + 1. As an
adversary, we construct the graph G(r + 1) of round r + 1 as follows. We first
add all free edges. Note that even after adding all free edges, no node learns
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any new token (according to our definition of learning a token). After adding
all free edges, we add any minimal set of additional edges to make G(r + 1)
connected. The following lemma shows that there are reasonably small sets Rv

for all nodes v 2 V such that we need to add at most O(log(nk)) non-free edges.

Lemma 9.6. There exist sets Rv for v 2 V such that for all v 2 V , |Rv|  2k/3
and for all rounds r and all {xv(r) : v 2 V }, after adding all free edges, the
number of remaining components is at most O(log(nk)).

Proof. We prove the lemma by using the probabilistic method. We choose the
sets Rv at random and we then show that with probability larger than 0 (we
can also prove high probability), the sets Rv are good (in the sense of the
lemma statement) for all possible combinations of transmitted tokens xv(r).
This implies that there exists a combination of sets Rv which works for all
combinations of xv(r).

The sets Rv are chosen as follows. For di↵erent nodes u, v, Ru and Rv

are chosen indepedently. Further, for each node v 2 V , Rv contains each of
the k tokens independently with probability 1/2. Now consider a round r and
assume that we add all the free edges. If the resulting graph consists of `
connected components, we need to add `�1 additional edges to make the graph
connected. Let us therefore consider the connected components of the resulting
graph. Assume that the node sets of the resulting connected components are
V
1

, . . . , V`. We consider an arbitrary set {v
1

, . . . , v`} of nodes such that for each
i 2 {1, . . . , `}, vi 2 Vi. Note that by definition of the sets V

1

, . . . , V`, for any
i 6= j, the edge {vi, vj} is not free. In other words, in the graph induced by all
non-free edges, the set {v

1

, . . . , v`} induces a clique of size `. We next show that
the occurrence of such a clique consisting of only non-free edges has very low
probability.

First, note that for every node v, the token xv(r) broadcast by v in round r
has to be from the set Av(r � 1). Hence, if for any two nodes u and v, xu(r) =
xv(r), the edge {u, v} is definitely free in round r (if two nodes broadcast the
same token, they cannot learn a new token from each other). Consequently, for
the nodes v

1

, . . . , v`, we have xvi(r) 6= xvj (r) for all i 6= j. The fact that the edge
{vi, vj} is non-free in particular implies that for xvi(r) 62 Rvj or xvj (r) 62 Rvi .
The probability for this to happen is 1� Pr(xvi(r) 2 Rvj ) · Pr(xvj (r) 2 Rvi) =
3/4. Hence, each edge is non-free with probability at most 3/4. Also note
that because xvi(r) 6= xvj (r) for i 6= j and because each token is independently
added with probability 1/2 to each Rv, the events

�
xvi(r) 62 Rvj _ xvj (r) 62 Rvi

 

are independent for di↵erent pairs (vi, vj). Hence, for a specific set of nodes
{v

1

, . . . , v`}, the probability that all the
�`
2

�
edges between these nodes are non-

free is at most (3/4)(
`
2). To upper bound the probability that there can be some

set of ` nodes with only non-free edges in some round, we can apply a union
bound over all possible sets S of ` nodes and all possible xv(r) for v 2 S. We
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therefore get

Pr(set of ` nodes with only non-free edges is possible)


✓
n

`

◆
· k` ·

✓
3

4

◆(`2)

 n` · k` ·
✓
3

4

◆
(`�1)

2/2

= e` ln(nk)�
(`�1)2

2 ln(4/3).

If we choose ` � C · ln(nk) for a su�ciently large constant C, the above proba-
bility is smaller than 1/n2. Hence, with probability at least 1 � 1/n2, it is not
possible to find a round r and a set of ` nodes {v

1

, . . . , v`} such that all edges
{vi, vj} for i 6= j are non-free in round r.

It remains to show that this probability is still large enough if we also condi-
tion on the fact that all the sets Rv are of size at most |Rv|  2k/3. The number
of tokens in Rv is binomially distributed with parameters k and 1/2 and we can
therefore use the Cherno↵ bound introduced in Chapter 10 to bound the prob-
ability that some set Rv becomes too large. For any � > 0, we have

Pr(|Rv| � (1 + �) · E[|Rv|]) = Pr

✓
|Rv| � (1 + �) · k

2

◆
 e�

min{�,�2}
3 · k2 .

Setting � = 1/3, we get that for all v 2 V , Pr(|Rv| � 2k/3)  e�k/54. After
adding all free edges, the number of resulting components is definitely at most
k (nodes broadcasting the same token are connected by a free edge). Since, we
already assumed that ` � C · ln(nk) for a su�ciently large constant C, we can
also assume that k � C · ln(n) for a su�ciently large constant C. For C large
enough, the probability for having an Rv of size |Rv| > 2k/3 is therefore also at
most 1/n2. A union bound then gives that with probability at most 2/n2, we
either have a too large Rv or we can have an `-clique of only non-free edges in
some round. Hence, with probability at least 1�2/n2, neither of these happens
and the claim of the lemma holds. As 1 � 2/n2 > 0 (for any n > 1), there are
sets Rv of size at most 2k/3 which guarantee that in every round, we need to
add at most O(log(nk)) non-free edges.

Theorem 9.7. Even in the synchronous start case, every deterministic token-
forwarding algorithm which forwards at most token per node and round needs at
least ⌦(nk/ log(nk)) rounds to solve the k-token dissemination problem.

Proof. The theorem follows almost immediately from Lemma 9.6. In a round
r, nodes can only learn new tokens over non-free edges (assuming that if node
v learns a token in Rv it does not count as learning a new token). By Lemma
9.6, there are sets Rv of size at most 2k/3 such that the total number of new
tokens learnt in a round ist at most O(log(nk)). Note that if all sets Rv are of
size at most 2k/3, if each token is initially only known by one node, on average
all nodes still need to learn essentially a third of all tokens. Hence, together, all
nodes need to learn ⌦(nk) tokens which are not in the respective Rv sets. As
only O(log(nk)) tokens can be learnt in each round, the lower bound follows.
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Remarks:

• The above lower bound can be generalized to algorithms where each
node is allowed to forward s tokens in each round. The lower bound
then becomes ⌦

�
nk

s log(nk)

�
.

• Note that while the lower bound only holds for deterministic algo-
rithms and token-forwarding algorithms, it holds even in the presence
of a central scheduler which is allowed to see the states of all nodes at
the beginning of a round and to decide what each node has to forward
in that round.

Chapter Notes

The dynamic network model and the problem definitions that we used in this
chapter have been introduced by Kuhn, Oshman, and Lynch in [KLO10]. How-
ever, similar dynamic network models have been used before, in particular by
O’Dell and Wattenhofer in [OW05] and by Avin et al. in [AKL08]. For a sum-
mary on related dynamic network model, we refer to the survey [KO11]. The
⌦(nk/ log(nk)) token dissemination lower bound was proven by Dutta et al. in
[DPRS13]. The lower bound has been generalized to settings where more than
one token can be sent in one message or where the dynamic graph is T -interval
connected by Haeuper and Kuhn in [HK12].

Bibliography
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