
Sa
m

pl
e So

lu
tio

n

University of Freiburg
Institute for Computer Science

Prof. Dr. F. Kuhn

Exam Theoretical Computer Science - Bridging Course
Thursday, August 17, 2017, 10:00-12:00

Name: .

Matriculation No.: .

Signature: .

Do not open or turn until told so by the supervisor!
• Write your name and matriculation number on this page and sign the document!
• Write your name on all sheets!
• Your signature confirms that you have answered all exam questions without any help, and that

you have notified exam supervision of any interference.
• Write legibly and only use a pen (ink or ball point). Do not use red! Do not use a pencil!
• This is an open book exam therefore printed or hand-written material is allowed.
• However, no electronic devices are allowed.
• There are eight tasks (with several sub-tasks each) and there is a total of 120 points.
• 50 points are sufficient in order to pass the exam.
• Only one solution per task is considered! Make sure to strike out alternative solutions, otherwise

the one yielding the minimal number of points is considered.
• Detailed steps might help you to get more points in case your final result is incorrect.
• The keywords Show... or Prove... indicate that you need to prove or explain your answer carefully.
• The keywords Give... or State... indicate that you only need to provide a plain answer.
• You may use information given in a Hint without explaining them.
• Read each task thoroughly and make sure you understand what is expected from you.
• Raise your hand if you have a question regarding the formulation of a task.
• Use the space below each task and the back of the sheet for your solution. The last two sheets

of this exam are blank and can be used for solutions. If you need additional sheets, raise your hand.

Question 1 2 3 4 5 6 7 8 Total

Points

Maximum 14 17 15 14 15 13 16 16 120

Sa
m

pl
e So

lu
tio

n

Task 1: Basic Mathematical Skills (14 Points)

(a) Prove the equation
∑n

i=0 2i = 2n+1 − 1 for all n ∈ N0 by induction on n. (5 Points)

(b) Let A,B be sets. We define the symmetric difference A∆B := (A \B) ∪ (B \ A).

Prove the following implication: (4 Points)

A ∩B 6= ∅ =⇒ A∆B 6= A ∪B.

Remark: A \ B := A ∩ B is the ’set minus’ operator, describing all elements of A that are
not in B. Instead of a formal proof, you can show the implication with Venn diagrams.

(c) Give the minimum and the maximum number of edges an undirected, bipartite graph
G = (V,E) with n := |V | nodes can have. You may assume that n is even. (1+4 Points)

Remark: A graph G = (V,E) is bipartite if its nodes V can be partitioned into two disjoint
sets U,W ⊆ V , such that there are no edges in E among any two nodes in U , and the same
is true for W . That is, for all {v1, v2} ∈ E it holds that v1 and v2 are not in the same part.

Sample Solution

(a) Induction base: The statement is true for n = 0, since
∑0

i=0 2i = 1 = 20+1 − 1. (1 Points)

Induction hypothesis: Presume the statement holds for an arbitrary, fixed n ∈ N0.

Induction step:
∑n+1

i=0 2i = 2n+1 +
∑n

i=0 2i Ind. hyp.
= 2n+1 + 2n+1 − 1 = 2n+2 − 1. (4 Points)

(b) Since A ∩ B 6= ∅ there is an x ∈ A ∩ B ⊆ A ∪ B. Since x ∈ A and x ∈ B, we have
x /∈ A \B and x /∈ B \ A. Therefore x /∈ (A \B) ∪ (B \ A) = A∆B.

(c) Minimum number: 0. (1 Points)

Reasoning: (not required for full points) A graph without any edges is obviously bipartite.

Maximum number: (n
2
)2 if n is even (and dn/2e · bn/2c if n is odd). (4 Points)

Reasoning: (not required for full points) a bipartition U,W with m := |U | and k := |W |
can have at most m · k edges. The term m · k can be interpreted as the area of a rectangle
(subject to m+ k = n) which is maximized for equal, or almost equal, side length.

2

Sa
m

pl
e So

lu
tio

n

Task 2: Regular Languages (17 Points)

Consider the following Deterministic Finite Automaton (DFA) A over the alphabet {a, b}.

q0start q1

q2 q3

a

b

a

b

a

b

a

b

(a) Give the shortest string accepted by A. (1 Points)

(b) Give an infinite set of strings that are accepted by A and consist only of b’s. (3 Points)

(c) Describe the language L(A) recognized by A (as a set or verbally). (4 Points)

(d) Now consider the language L(γ) given by the regular expression γ := (ab)∗(ba)∗.

Give a DFA that recognizes L(γ) and has at most four states. (6 Points)

Remark: You can give a non-deterministic finite automaton (NFA) for a penalty of 2 points
or an automaton with more than four states for a penalty of 1 point for each additional state.

(e) Let L be the language consisting of words of the form w1w2w3 with w1, w2, w3∈{a, b, c}∗
and w1 contains no a’s and w2 contains no b’s and w3 contains no c’s.

Give a regular expression that generates L. (3 Points)

Sample Solution

(a) The shortest string in L(A) is b.

(b) A accepts the family {b(bb)n | n ∈ N0}.

(c) L(A) := {w ∈ {a, b}∗ | the number of a’s in w is even and the number of b’s in w is odd}.

(d)

start

a

b

b ab

(e) (b ∪ c)∗ · (a ∪ c)∗ · (a ∪ b)∗.

3

Sa
m

pl
e So

lu
tio

n

Task 3: Context-Free Languages (15 Points)

Let L = {ssRC | s ∈ {0, 1}∗} be a language over alphabet {0, 1}, where sRC describes the
reverse complement of a string s ∈ {0, 1}∗, obtained by reversing the order of symbols in s
and then exchanging every 0 in s with 1 and every 1 in s with 0.

(a) State whether there is a string in L with an unequal number of zeros and ones. (1 Points)

(b) Give a context-free grammar that generates L. (3 Points)

(c) Give a Pushdown Automaton (PDA) that recognizes L. (5 Points)

(d) Prove that L is not a regular language by using the Pumping Lemma. (6 Points)

Sample Solution

(a) No, there exists no such string in L since |s|0 = |sRC |1 and |s|1 = |sRC |0, hence

|ssRC |0 = |s|0 + |sRC |0 = |sRC |1 + |s|1 = |ssRC |1.

Remark: Just ’No’ suffices.

(b) Let G = ({S}, {0, 1}, R, S) with R := {S → ε|0S1|1S0}. Then L(G) = L.

(c)

start
ε, ε→ $

0, ε→ 1

1, ε→ 0

ε, ε→ ε

0, 0→ ε

1, 1→ ε

ε, $→ ε

(d) We prove that L is not regular by showing that L violates the pumping condition, i.e. always
contains a string that can not be pumped. Let p be the pumping length. We investigate the
string s = 0p1p. Since 0p = (1p)RC we have s ∈ L. Furthermore s is longer than p.

Consider a partition xyz = s with |y| ≥ 1 and |xy| ≤ p. It follows that y = 0q with
1 ≤ q ≤ p. Since xy0z = 0p−q1p has fewer zeros than ones, we can not divide xy0z into
a string and its reverse complement, because any string of this form must have a number of
zeros equal to the number of ones. Hence xy0z /∈ L. Remark: Works with any choice i 6= 1.

4

Sa
m

pl
e So

lu
tio

n

Task 4: Turing machines (14 Points)

(a) Give a comparison of the set of languages recognized by deterministic Turing machines
with the set of languages recognized by non-deterministic Turing machines. (2 Points)

(b) State two differences between deterministic and non-deterministic Turing machines.

Remark: You obtain 1 point for the first difference and 2 points for the second. (1+2 Points)

(c) One can define a variant of the Turing machine which allows three actions of the read/write-
head: {L,R, S}, where S means that the head stands still during that step.

Let M1 be a Turing machine that uses head movements {L,R, S}. Give an explicit
construction procedure that transfers M1 into a Turing machine M2 that uses only head
movements {L,R} and recognizes the same language, i.e. L(M1) = L(M2). (5 Points)

(d) Briefly explain how to construct (or explicitly construct) a Turing machine for the language
defined by the automaton depicted in Task 2 of this exam. (4 Points)

Sample Solution

(a) As proven in the lecture, deterministic and non deterministic Turing machines are equally
powerful in terms of the languages they recognize. Hence both language classes are equal.
Remark: The bold sentence suffices to receive full points.

(b) Non-exhaustive list of possible namings of differences:

1. Non-deterministic Turing machines might define multiple transitions for the same state
and symbol read by the read/write-head.

2. The transition function δ of deterministic Turing machines is a transition relation for
non-deterministic Turing machines.

3. Non-deterministic Turing machines may have ε-transitions.

4. Non-deterministic Turing machines probably recognize more languages in polynomial
time than deterministic ones (if P 6= NP).

5. Acceptance is defined differently. In the case of non-deterministic Turing machines the
existence of an accepting path suffices to recognize an input, even though other paths for
that input may not be accepting.

(c) We take the TM machine M1 and subsequently remove all transitions which contain the
neutral movement until we obtain a Turing machine according to the standard definition.
For each δ(q, a) = (q′, b, S) add an additional state q̃ = q̃(q, a, q′, b, S). Then remove this
transition and add transitions δ(q, a)=(q̃, b, L) and δ(q̃, x)=(q′, x, R) for all x ∈ Σ instead.

Reasoning: (not required for full points) After execution of these two transitions the Turing
machine will be in the same configuration as it would have been when executing the original
transition. Each step of M1 can be simulated with at most two steps by M2.

5

Sa
m

pl
e So

lu
tio

n

(d) We modify the DFA from Task 2 such that it becomes a Turing machine. The automaton
stays the same we change only the transitions to the format of a Turing machine. This can
be done by moving the read/write-head to right over each input symbol for each transition of
the DFA. I.e. a transition δ(q, a) = q′ of the DFA becomes a transition δ′(q, a) = (q′, a, R).

Remark: A short informal explanation how to transform A from Task 2 into an equivalent
Turing machine suffices. Formally, for the DFA A = (Q,Σ, δ, q0, {q2}) we define the Turing
machine M = (Q,Σ,Γ = Σ∪{t}, δ′, q0, qaccept = q2, qreject}) where qreject is the implicit
garbage state of A. This procedure can be applied to any DFA, provided it has only one
final state (however we can just as easily define Turing machines with multiple final states).
Giving an explicit state diagram of a Turing machineM withL(M)=L(A) is also accepted.

6

Sa
m

pl
e So

lu
tio

n

Task 5: O - Notation (15 Points)

State whether the following claims are true or false (1 point each). Then prove or disprove the
claim (6 points for (a) and 7 points for (b)). Use the definition of the O-notation.

(a) n
√
2 ∈ O(

√
2 · n). Hint:

√
2 > 1. (1+6 Points)

(b) 2
√
n ∈ O((

√
2)n). (1+7 Points)

Sample Solution

(a) The claim is false. We disprove it by showing a contradiction. Assume there is a constant
c > 0 and M ∈ N such that for all n > M the inequality n

√
2 ≤ c ·

√
2 · n holds.

⇐⇒ n
√
2 ≤ c ·

√
2 · n

⇐⇒ n
√
2

n
≤ c ·

√
2

⇐⇒ n

>0 (Hint)︷︸︸︷√
2−1 ≤ c ·

√
2

However the left side n
√
2−1 is unbounded, while the right side is constant. Therefore the

inequality is false for all sufficiently large n, a contradiction.

(b) The claim is true. We give c > 0 and M ∈ N such that for all n ≥M: 2
√
n ≤ c · (

√
2)n.

2
√
n ≤ c · (

√
2)n

⇐⇒ log(2
√
n) ≤ log(c · (

√
2)n)

⇐⇒
√
n · log 2 ≤ log c+ n · log

√
2

⇐⇒
√
n ≤ log c+

n

2
c=1⇐⇒ 1 ≤

√
n

2

Which is true for c = 1 and all n ≥M := 4.

7

Sa
m

pl
e So

lu
tio

n

Task 6: Decidability (13 Points)

(a) Consider the problem COLORING:

COLORING := {〈G, k〉 |undirected graph G has a k-coloring}.

A k-coloring of G= (V,E) is an assignment c : V →{1, . . . , k} of nodes to colors, such
that no equally colored nodes are adjacent, i.e., for all edges {u, v}∈E we have c(u) 6=c(v).

(i) Show that COLORING is decidable by giving an algorithm (abstract description or
pseudo-code) that decides whether a graph has a k-coloring. (6 Points)

(ii) Explain why your algorithm accepts exactly the instances 〈G, k〉 which have a k-
coloring and why it always halts. (2+1 Points)

(b) Consider the problem MULTIPARTITION

MULTIPARTITION := {〈G, k〉 |undirected graph G has a k-partition}.

A k-partition of G = (V,E) is a partition of V into k disjoint subsets V1, . . . , Vk such
that there are no edges among nodes from two different subsets. Formally: For all edges
{u, v} ∈ E it holds that u and v are in different subsets, i.e., u ∈ Vi, v ∈ Vj with i 6= j.

A decider for COLORING can be used to show the decidability of MULTIPARTITION.

Explain how to use your algorithm for COLORING to decide MULTIPARTITION. (4 Points)

Remark: If you did not succeed in giving an algorithm that decides COLORING in (a), you
may assume that you have such an algorithm.

Sample Solution

(a) Given an input graph G = (V,E) with input number k, we test for all of the at mostO(k|V |)
possible assignments c : V → {1, . . . , k} of colors to nodes, whether they form a proper
coloring. Remark: The exact number of possible assignments does not matter, it is sufficient
to state that there are only finitely many.

To check whether an assignment c is a proper coloring, the algorithm tests for all edges
{u, v} ∈ E whether c(u) 6= c(v). If we find an edge {u, v} ∈ E with equally colored
end-nodes, i.e. c(u) = c(v), the algorithm drops the current color assignment and continues
with the next one.

If all edges were checked positively, i.e. c(u) 6= c(v) for all {u, v} ∈ E the algorithm
accepts and halts. If, on the other hand, all possible assignments were dropped due to
equally colored, adjacent nodes, the algorithm rejects. (6 Points)

If instance 〈G, k〉 has a k-coloring, the algorithm will accept it at some point, since the al-
gorithm tries all possible color assignments and eventually finds the valid k-coloring. Con-
versely, if G has no valid k-colorings all color assignments are dropped due to equally
colored, adjacent nodes, and the algorithm rejects 〈G, k〉. (1+1 Points)

8

Sa
m

pl
e So

lu
tio

n

A check whether c(u) 6= c(v) can be done in O(|V |) time. For each color assignment c
we do at mostO(|E|) of those checks. Furthermore we have at mostO(k|V |) possible color
assignments with at most k colors. Therefore the algorithm terminates afterO(|V |·|E|·k|V |)
steps, i.e. finitely many steps. (1 Points)

Remark: The run-time of the algorithm does not need to be analyzed in order to obtain the
point. It suffices to point out that all involved steps are finished after finite time.

(b) A k-coloring induces a k-partition (and vice versa). This can be done by putting nodes v
with the same color c(v) ∈ {1, . . . k} into the respective subset Vc(v). Since nodes of a color
i are not adjacent in a proper k-coloring, there are no adjacent nodes in Vi. The process
works also in the opposite direction. Therefore G has a k-coloring if and only if G has a
k-partition. Hence, we can decide whether G has a k-partition by simply deciding whether
it has a k-coloring, with our algorithm from (a).

Remark: The vital part is stating the equivalency (bold), which yields at least 3 points if
done properly. One more point if there is some reasonable explanation. At most 1 point for
stating only one direction, e.g., the implication "k-coloring k-partition", (not sufficient
for a reduction).

9

Sa
m

pl
e So

lu
tio

n

Task 7: Complexity Theory (16 Points)

(a) Give a language which is in NP but not in P . Assume that P 6= NP! (2 Points)

(b) Give a language which is neither in P nor in NP . (2 Points)

(c) Given a set U of n elements (’universe’) and a collection S ⊆ 2U of m subsets of U , a
selection C1, . . . , Ck ∈ S of k sets is called a set cover of size k if C1 ∪ . . . ∪ Ck = U . The
SETCOVER-problem is defined as

SETCOVER :={〈U, S, k〉 |U is a set, S ⊆ 2U and there is a set cover for (U, S) of size k}.

Assume that we already know that the problem VERTEXCOVER is NP-complete

VERTEXCOVER := {〈G, k〉 | undirected graph G has a vertex cover of size at most k}.

Given a graph G = (V,E), a vertex cover is a subset V ′ ⊆ V of nodes of G such that every
edge of G is adjacent to a node in the subset V ′.

Show that SETCOVER is NP-complete. (12 Points)

Hint: For the polynomial reduction, let the edges E of a given instance of the VERTEX-
COVER problem be the universe U for the associated instance of the SETCOVER problem.

Sample Solution

(a) VERTEXCOVER is in NP and due to its NP-completeness not in P subject to NP 6= P .

(b) The halting problem is neither in P nor inNP as it is undecidable and all problems inNP
and P are decidable.

(c) First we show SETCOVER ∈ NP using the ’guess and check’ procedure.

Guess: Given an instance (U, S) of SETCOVER, guess a selection C1, . . . , Ck∈S of k sets.

Check: Given a selection C1, . . . , Ck∈S we give an algorithm that checks if C1∪ . . .∪Ck =
U (or not!). For each u ∈ U we check whether u is contained in at least one of the Ci.

We can do this with a loop over all elements u∈U . Then we use a second loop nested inside
the first one, looping from i = 1 to k over the Ci. The check whether u ∈ Ci can be done
with a third loop nested inside the second, that loops over all c ∈ Ci and checks if c = u.

If we find a u ∈ U which is not contained in any Ci, then the checking algorithm immedi-
ately rejects the guessed solution (we need make sure that the non-deterministic ’guessing
machine’ can not ’sell’ us a wrong guess). Otherwise we accept at the end.

The runtime for this algorithm is at most O
(
|U | · k · maxi=1,...,k |Ci|

)
⊆ O

(
k|U |2

)
, which

is polynomial in the input size. (4 Points)

Remark: It is not necessary to give a detailed algorithm description or even pseudo code
for the checking process to receive full points. A quick explanation (like the bold sentence)
and a rough polynomial upper bound for the runtime of the checking procedure suffices.

10

Sa
m

pl
e So

lu
tio

n

Second we reduce VERTEXCOVER to SETCOVER to show that SETCOVER is NP-hard.

Let 〈G, k〉 (with G = (V,E)) be a given VERTEXCOVER instance. We reduce it to a
corresponding SETCOVER instance 〈UG, SG, k〉 as follows: Let UG := E (Hint!) and SG :=
{Cv | v ∈ V } where Cv := {e ∈ E | v ∈ e} ⊆ UG is the set of adjacent edges of v.

The construction of 〈UG, SG, k〉 can be done in polynomial time (in the input size |〈G, k〉|).
Now we need to show that 〈G, k〉∈VERTEXCOVER if and only if 〈UG, SG, k〉∈SETCOVER.

〈G, k〉 ∈ VERTEXCOVER ⇔ G has a vertex cover V ′ = {v1, . . . , vk} ⊆ V of size k
⇔ Every edge e ∈ E is adjacent to one of the nodes v1, . . . , vk
⇔ Cv1 ∪ . . . ∪ Cvk = E

⇔ Cv1 , . . . , Cvk is a set cover of (UG, SG)

⇔ 〈UG, SG, k〉 ∈ SETCOVER.

(8 Points)

11

Sa
m

pl
e So

lu
tio

n

Task 8: Logic (16 Points)

(a) Consider the following propositional formula

ψ := (x ∧ y → z ∨ w) ∧ (y → x) ∧ (z ∧ y → 0) ∧ (w ∧ y → 0) ∧ y.

(i) Transfer ψ into an equivalent formula in conjunctive normal form (CNF). (3 Points)

(ii) Use the resolution calculus to show that ψ is unsatisfiable. (5 Points)

(b) Consider the following first order logical formulae

ϕ1 := ∀xR(x, x)

ϕ2 := ∀x∀y R(x, y)→ (∃zR(x, z) ∧R(z, y))

ϕ3 := ∃x∃y (¬R(x, y) ∧ ¬R(y, x))

where x, y are variable symbols and R is a binary predicate. Give an interpretation

(i) I1 which is a model of ϕ1 ∧ ϕ2. (3 Points)

(ii) I2 which is no model of ϕ1 ∧ ϕ2 ∧ ϕ3. (2 Points)

(iii) I3 which is a model of ϕ1 ∧ ϕ2 ∧ ϕ3. (3 Points)

Remark: No proof required.

Sample Solution

(a) (i) (¬x ∨ ¬y ∨ z ∨ w) ∧ (¬y ∨ x) ∧ (¬z ∨ ¬y) ∧ (¬w ∨ ¬y) ∧ y.
(ii) We use the resolution inference rule to derive an unsatisfiable formula

{¬w,¬y}, {y} `R {¬w}
{¬z,¬y}, {y} `R {¬z}
{x,¬y}, {y} `R {x}

{¬x,¬y, z, w}, {y} `R {¬x, z, w}
{¬x, z, w}, {¬w} `R {¬x, z}
{¬x, z}, {¬z} `R {¬x}
{¬x}, {x} `R 2

(b) (i) Pick I1 := 〈R, ·I1〉 where RI2(x, y) :⇐⇒ x ≤R y.
This is a model because ’≤R’ is reflexive, therefore fulfills ϕ1. Moreover for every
x, y ∈ R with x ≤R y we can choose z := x, which fulfills x ≤R z ∧ z ≤R y. Thus ϕ2

is also satisfied.

(ii) Pick I2 := 〈R, ·I〉 where RI2(x, y) = false.
This is not a model since it violates ϕ1, e.g. RI2(5, 5)=false.

12

Sa
m

pl
e So

lu
tio

n

(iii) Take two disjoint copies of R and the standard ≤R relation on each of them; if x and y
are from different copies they are not related in R. Formally let

I3 := 〈{(a, 1) | a ∈ R}∪̇{(a, 2) | a ∈ R}, ·I3〉

where RI3((a, g), (b, h))⇔ (g = h and a ≤R b).
This is a model because ≤R is reflexive, therefore I3 fulfills ϕ1. Furthermore for every
two x = (a, g) and y = (b, h) with RI3((a, g), (b, h)), i.e., g = h, we can choose
z := (a, g) which fulfills RI3((a, g), (a, g))∧RI3((a, g), (b, h)). Thus ϕ2 is also satis-
fied. ϕ3 is also satisfied, e.g., (5, 1) and (7, 2) are incomparable, i.e., we have neither
RI3((5, 1), (7, 2)) nor RI3((7, 2), (5, 1))

13

