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Exercise 1: O-Notation Formal Proofs (1+2+3 points)

The set O(f) contains all functions that are asymptotically not growing faster than the function f
(when additive or multiplicative constants are neglected). That is:

g ∈ O(f)⇐⇒ ∃c ≥ 0,∃M ∈ N, ∀n ≥M : g(n) ≤ c · f(n)

For the following pairs of functions, check whether f ∈ O(g) or g ∈ O(f) or both. Proof your claims
(you do not have to proof a negative result /∈, though).

(a) f(n) = 100n, g(n) = 0.1 · n2

(b) f(n) =
3
√
n2, g(n) =

√
n

(c) f(n) = log2(2
n · n3), g(n) = 3n Hint: You may use that log2 n ≤ n for all n ∈ N.

Exercise 2: Sort Functions by Asymptotic Growth (3 points)

Sort the following functions by asymptotic growth using the O-notation. Write g <O f if g ∈ O(f)
and g /∈ O(f). Write g =O f if f ∈ O(g) and g ∈ O(f). Note: For each error you will lose 1

2 points.
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Exercise 3: The class P (1+2+1+2 points)

Show that the following languages (∼= problems) are contained in the class P. Do this by giving an
algorithm whose run-time can be bound by a polynomial and decides whether a given input string is
in the respective language. Use the O-notation to bound the run-time of your algorithm.1

(a) Palindrome:= {w ∈ {0, 1}∗ | w is a palindrome}

(b) List := {〈A, c〉 | A is a finite list of integers which contains x, y ∈ A such that x + y = c}.

(c) 3-Clique := {〈G〉 | graph G has a clique of size at least 3}
1Since it is typically easy (i.e. feasible in polynomial time) to decide whether an input is well-formed (cf. lecture),

your algorithm only needs to consider well-formed inputs.
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(d) 17-DominatingSet := {〈G〉 | graph G has a dominating set of size at most 17}

• A clique of a graph G = (V,E) is a subset Q ⊆ V such that for all u, v ∈ Q : {u, v} ∈ E.

• A dominating set of a graph G = (V,E) is a subset D ⊆ V such that for every vertex v ∈ V :
v ∈ D or v adjacent to a node u ∈ D.

Exercise 4: Traveling Salesman Problem (2+3 points)

A Hamiltonian cycle in a complete (a graph is complete if it is a clique), weighted (with weights in
N) graph is a path in that graph, which contains every node exactly once and where the first node of
the path equals the last node. Its length is the sum of the weights of its edges. The decision variant
of the Hamiltonian cycle is given by

D-TSP := {〈G, k〉 | undirected, weighted graph G has a hamiltonian cycle of length at most k}.

The objective of the optimization variant of the Hamiltonian cycle is to find, for a given complete,
weighted graph G, the minimal k such that there is a Hamiltonian cycle in G that has length k.
Assume that you already have an algorithm that solves D-TSP, i.e., it tells you for 〈G, k〉 whether
〈G, k〉 ∈ D-TSP or not.

(a) Show how to use a polynomial number of repetitions of the D-TSP algorithm to determine the
length k of a shortest Hamiltonian cycle of a given graph G.

(b) Use the previous result to show that if the decision variant of TSP is in P then we can find the
edges of a shortest Hamiltonian cycle in P as well.2

Hint: Try to find out whether an edge is needed for a shortest Hamiltonian cycle by manipulating
its weight.

2This is called a polynomial reduction.
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