Theoretical Computer Science - Bridging Course Summer Term 2017 Exercise Sheet 8

Hand in (electronically or hard copy) by 12:15 pm, July 10, 2017

Exercise 1: \mathcal{NP} and Star Operation

Show that \mathcal{NP} is closed under the star operation.

Remark 1: Let A be a language. The operation star (\cdot^*) is defined as follows:

 $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A \text{ where } 0 \le i \le k\}.$

Remark 2: A collection of objects is closed under some operation if applying that operation (a finite number of times) to members of the collection returns an object still in the collection.

Exercise 2: The class \mathcal{NPC}

Let L_1, L_2 be languages (problems) over alphabets Σ_1, Σ_2 . Then $L_1 \leq_p L_2$ (L_1 is polynomially reducible to L_2), iff a function $f: \Sigma_1^* \to \Sigma_2^*$ exists, that can be calculated in polynomial time and

 $\forall s \in \Sigma_1 : s \in L_1 \iff f(s) \in L_2.$

Language L is called \mathcal{NP} -hard, if all languages $L' \in \mathcal{NP}$ are polynomially reducible to L, i.e.

 $L \ \mathcal{NP}$ -hard $\iff \forall L' \in \mathcal{NP} : L' \leq_n L.$

The reduction relation ' \leq_p ' is transitive ($L_1 \leq_p L_2$ and $L_2 \leq_p L_3 \Rightarrow L_1 \leq_p L_3$). Therefore, in order to show that L is \mathcal{NP} -hard, it suffices to reduce a known \mathcal{NP} -hard problem \tilde{L} to L, i.e. $\tilde{L} \leq_p L$. Finally a language is called \mathcal{NP} -complete ($\Leftrightarrow: L \in \mathcal{NPC}$), if

- 1. $L \in \mathcal{NP}$ and
- 2. L is \mathcal{NP} -hard.

Show HITTINGSET := { $\langle \mathcal{U}, S, k \rangle$ | universe \mathcal{U} has subset $H, |H| \leq k$ that hits all sets in $S \subseteq 2^{\mathcal{U}}$ } $\in \mathcal{NPC}$.¹ Use that VERTEXCOVER := { $\langle G, k \rangle$ | Graph G has a vertex cover of size at most k} $\in \mathcal{NPC}$.

Remark: A hitting set $H \subseteq \mathcal{U}$ for a given universe \mathcal{U} (which is a finite set) and a set S = $\{S_1, S_2, \ldots, S_m\}$ of subsets $S_i \subseteq \mathcal{U}$, fulfills the property $H \cap S_i \neq \emptyset$ for $1 \leq i \leq m$ (H 'hits' at least one element of every S_i).

A vertex cover is a subset $V' \subseteq V$ of nodes of G = (V, E) such that every edge of G is adjacent to a node in the subset.

Hint: For the poly. transformation (\leq_p) you have to describe an algorithm (with poly. run-time!) that transforms an instance $\langle G, k \rangle$ of VERTEXCOVER into an instance $\langle \mathcal{U}, S, k \rangle$ of HITTINGSET, s.t. a vertex cover of size $\leq k$ in G becomes a hitting set of \mathcal{U} of size $\leq k$ for S and vice versa(!).

(5 points)

(8 points)

¹The power set $2^{\mathcal{U}}$ of some ground set \mathcal{U} is the set of *all subsets* of \mathcal{U} . So $S \subseteq 2^{\mathcal{U}}$ is a collection of subsets of \mathcal{U} .

Exercise 3: Complexity Classes: Big Picture

(2+3+2 points)

- (a) Why is $\mathcal{P} \subseteq \mathcal{NP}$?
- (b) Show that $\mathcal{P} \cap \mathcal{NPC} = \emptyset$ if $\mathcal{P} \neq \mathcal{NP}$. Hint: Assume that there exists a $L \in \mathcal{P} \cap \mathcal{NPC}$ and derive a contradiction to $\mathcal{P} \neq \mathcal{NP}$.
- (c) Give a Venn Diagram showing the sets $\mathcal{P}, \mathcal{NP}, \mathcal{NPC}$ for both cases $\mathcal{P} \neq \mathcal{NP}$ and $\mathcal{P} = \mathcal{NP}$. Remark: Use the results of (a) and (b) even if you did not succeed in proving those.